### Emerging Technologies With P Fertilizers

2007 Fertilizer Outlook and Technology Conference
Terry A. Tindall Ph.D.
J.R. Simplot Company

## NEW METHODS FOR INFLUENCING PHOSPHATE AVAILABILITY TO PLANTS

#### Common Objective...

Treat Microenvironments, Not Entire Soil Mass, to Improve Effectiveness

## TECHNOLOGY INCLUDED IN THIS REPORT PROVIDED BY:

Agrium
Simplot
Specialty Fertilizer Products

#### Phosphate becomes tied-up, or fixed

#### On low pH soils

- Aluminum
- •Iron

#### On high pH soils

- Calcium
- Magnesium

### PHOSPHORUS FERTILIZERS THE PROBLEM

- Crop recovery limited to 5 25% of applied P fertilizer during the season of application (Mortvedt, 1994).
- At high pH, P is fixed by Ca and Mg.
- At low pH, P is fixed by Fe and Al.

# MICROENVIRONMENTAL CONDITIONS HAVE SUBSTANTIAL EFFECTS ON NUTRIENT AVAILABILITY

# MODIFICATION OF MICROENVIRONMENTS RELATIVE TO PAVAILABILITY

- Banding of P
- Dual banding of ammonium N and P
- Injection of P fertilizers—fertigation

# WE'VE UNDERSTOOD THE VALUE OF PREPLANT BANDING OF N AND P FOR OVER 30 YEARS

# NEW POLYMER COATINGS FOR INCREASING PHOSPHORUS USE EFFICIENCY AND INCREASING PROFITABILITY

# AGRIUM Controlled Release Phosphate (CRP) Polymer-coated, slowed dissolution

- Diminished effect on crop emergence
- Greater flexibility in starter P rates
- Extended availability of P...slowed fixation

# AGRIUM'S EXPERIENCE WITH POYMER COATINGS

- Polymer coated urea (ESN)
- Polymer coated P
- Controlled Release w/POLYON—10-48 0—temperature dependent

#### RESEARCHERS

- Dr. Cynthia Grant, AAFC
- Dr. Jeff Schoenau, Univ. of Saskatchewan

Dr. Jeff Stark and Dr. Terry Tindall—U of ID and JRS

# EVALUATING THE IMPACT OF SEED-ROW PLACED CRP ON CROP EMERGENCE

J.J. Schoenau, P. Qian, T. King and C. Fatteicher University of Saskatchewan

#### SASKATCHEWAN STUDY

#### **Objective:**

Compare impact of controlled release P to conventional MAP on germination and emergence of 5 crops...canola, yellow pea, flax, mustard and alfalfa.

## AGRIUM CRP EFFECTS ON CROP EMERGENCE

|                                      | Emergence Counts 20 days After Planting |       |       |       |              |       |  |  |
|--------------------------------------|-----------------------------------------|-------|-------|-------|--------------|-------|--|--|
| Rate of P                            | Canola                                  |       | Flax  |       | Alfalfa      |       |  |  |
| kg P <sub>2</sub> O <sub>5</sub> /ha | MAP                                     | CRP   | MAP   | CRP   | MAP          | CRP   |  |  |
|                                      |                                         | 40.0  | 40.0  | 40.0  | 440          | 400   |  |  |
| 0                                    | 11.5a                                   | 10.8a | 13.8a | 12.0a | 14.3a        | 12.8a |  |  |
| 20                                   | 10.8a                                   | 11.0a | 12.8a | 11.3a | 13.3a        | 12.0a |  |  |
| 40                                   | 8.3c                                    | 11.5a | 8.8c  | 12.0a | 9.0b         | 12.5a |  |  |
| 60                                   | 5.8d                                    | 11.0a | 4.5d  | 12.0a | <b>5.3</b> c | 10.3a |  |  |
| 80                                   | <b>5.5</b> d                            | 11.3a | 2.0e  | 11.8a | <b>2.3</b> d | 14.3a |  |  |
|                                      |                                         |       |       |       |              |       |  |  |

P < 0.05, Soil pH = 7.4. Jeff Schoenau et al., U. of Saskatchewan.

## AGRIUM CRP EFFECTS ON CROP EMERGENCE

|                                                   | % Emergence 20 days After Planting |     |             |     |         |     |  |  |  |
|---------------------------------------------------|------------------------------------|-----|-------------|-----|---------|-----|--|--|--|
| Rate of P<br>kg P <sub>2</sub> O <sub>5</sub> /ha | Canola                             |     | Flax        |     | Alfalfa |     |  |  |  |
|                                                   | MAP                                | CRP | MAP         | CRP | MAP     | CRP |  |  |  |
| 0                                                 | 96a                                | 90a | 69a         | 60a | 71a     | 64a |  |  |  |
| 20                                                | 90ab                               | 92a | 64ab        | 56a | 66a     | 60a |  |  |  |
| 40                                                | 69c                                | 96a | 44c         | 60a | 45b     | 63a |  |  |  |
| 60                                                | 48d                                | 92a | <b>23</b> d | 60a | 26c     | 51a |  |  |  |
| 80                                                | 46d                                | 94a | 10e         | 50a | 11d     | 71a |  |  |  |

P < 0.05, Soil pH = 7.4. Jeff Schoenau et al., U. of Saskatchewan.

#### CONCLUSIONS

- Negative impact of conventional MAP at rates of 30 kg P<sub>2</sub>O<sub>5</sub> and above for all crops
- Up to 80 kg P<sub>2</sub>O<sub>5</sub> as CRP did not reduce germination and emergence except on yellow pea
- CRP would have advantages with seed contact fertilization

#### IMPROVING P NUTRITION IN WHEAT

Cynthia Grant et al AAFC, Brandon, MB

#### **OBJECTIVES**

- Compare efficiency of sidebanded MAP to surface or sidebanded fluid P (APP)
- Evaluate the performance of controlled release P (CRP) compared to MAP
- Investigate mycorrhizal inoculant effects on crop responses to applied P

#### LOCATIONS

- 2 in Manitoba
- 1 in Alberta

**SPRING WHEAT** 

### CRP Enhanced Stand Density at 2 weeks at Lacombe



Cindy Grant, AAFC

# CRP Increased Biomass Production at Six Weeks at Two Sites





#### Biomass at Heading Was Increased by ERP at Lacembe



Cindy Grant, AAFC

# Grain Yield at Lacombe was Higher with Side-banded CRP than MAP



Yield with APP similar or numerically better

Cindy Grant, AAFC

#### PRODUCT:

#### AVAIL

Specialty Fertilizer Products and J.R. Simplot

#### WHAT IS AVAIL?

- One of a patented family of dicarboxylic copolymers.
- Used as a coating on granular phosphates or mixed into fluid P fertilizers to enhance P availability.

#### **AVAIL Polymer Chain**

#### **AVAIL CHARACTERISTICS**

- An extremely high cation exchange capacity

   approximately 1800 milliequivalents /100
   gms.
- Polymeric structure is very specific to attracting and adsorbing multivalent cations.
- Functionality is not affected by pH, temperature ranges.
- Biodegradable and water soluble.

## Soil Phosphate

- 95% of the phosphorus in the soil is tied up as insoluble compounds and is unavailable for use by the plant.
- Added fertilizer phosphate is quickly converted to insoluble forms (usually calcium phosphates)

Ca++HPO4--



#### Regular Phosphate



#### AVAIL® Phosphate Enhancer





### AVAIL® Polymer Coated Phosphate



AVAIL® Creates a zone where phosphate remains soluble therefore plant roots can access P more freely.

## AVAIL® Polymer Coated Phosphate



#### **AVAIL®** Phosphate Enhancer

#### Phosphate for the 21st Century

AVAIL® Creates a zone where phosphate remains soluble resulting in higher P uptake!

#### WHAT IS THE MODE OF ACTION?

#### **Mode of Action Theory**

- Polymer sequesters antagonistic cations out of soil solution around P fertilizer granule.
- P remains unfixed and available for plant uptake.
- Results in highly concentrated zones of available
   P for the plants (microenvironments).

# INITIAL GREENHOUSE STUDY AT KANSAS STATE UNIVERSITY

- Acidic (pH 4.7), high P soil
- 1% polymer coating on MAP
- P banded beside seed
- Essentially doubled corn dry matter



#### INITIAL AVAIL EVALUATION Corn - Greenhouse

| Material           | Dry Wt. | P Conc. | P Uptake |
|--------------------|---------|---------|----------|
|                    | grams   | %       | mgm      |
| Control            | 5.18    | 0.827   | 43.2     |
| P1X                | 8.90    | 0.996   | 88.7     |
| P2X                | 9.55    | 1.043   | 99.6     |
| LSD <sub>.05</sub> | 2.47    | 0.177   | 31.8     |
|                    |         |         |          |

Lamond, Kansas State Univ.

Soil pH=4.7; Soil test P=74 ppm Bray-1. 40 lb/A (20 ppm) P<sub>2</sub>O<sub>5</sub> banded on basis of 30" row.



## WHEAT RESPONSE TO ENHANCED P AVAILABILITY Kansas

| Treatment Applied | Grain Yield<br>bu/A |
|-------------------|---------------------|
| Control           | 31.6                |
| MAP               | 34.2                |
| MAP + polymer     | 39.5                |

1% polymer Murphy Agro – Kansas State Univ. 20 lb P<sub>2</sub>O<sub>5</sub>/A banded at planting. Soil pH 4.7



# POLYMER AND P APPLICATION METHOD EFFECTS ON WHEAT Arkansas

| Treatment                       | Yield<br>bu/A |
|---------------------------------|---------------|
| Treatment                       | DU/A          |
| Control                         | 46.7          |
| MAP banded                      | 54.7          |
| MAP + polymer, banded           | 76.9          |
| MAP broadcast                   | 58.2          |
| MAP + polymer, broadcast        | 65.6          |
| MAP + seed, broadcast           | 55.1          |
| Map + polymer + seed, broadcast | 68.3          |
| LSD (0.10)                      | 7.5           |

30 lb  $P_2O_5/A$ . Soil P test low. Soil pH=7.6.

Palmer, Univ. of Arkansas

# AVAIL EFFECTS ON ALUMINUM TOXICITY TO WHEAT SEEDLINGS

Dr. Rich Koenig, Washington State Univ.

- \* Screening test for wheat varieties
- Various concentrations of Al
- \* Included Avail polymer as a variable

#### ALUMINUM EFFECTS ON WHEAT GROWTH Low pH



Rich Koenig, WSU

# ALUMINUM EFFECTS ON WHEAT IN PRESENCE OF AVAIL POLYMER Low pH



Rich Koenig, WSU

#### ALUMINUM EFFECTS ON WHEAT GROWTH pH 5.0



# ALUMINUM EFFECTS ON WHEAT GROWTH IN PRESENCE OF AVAIL POLYMER pH 5.0



Rich Koenig, WSU

# WSU WORK HELPS CONFIRM THEORY OF AVAIL EFFECTS ON P FIXING CATIONS

 Polymer lowers the activity of multivalent cations in solution.



## CORN RESPONSE TO ENHANCED P AVAILABILITY Missouri

|                         | Grain Yield |
|-------------------------|-------------|
| Treatment               | bu/A        |
| Control, no P           | 135         |
| MAP broadcast           | 132         |
| MAP + polymer broadcast | 151         |
| MAP banded              | 132         |
| MAP + polymer banded    | 157         |
| LSD (0.10)              | 13          |
|                         |             |

1% polymer coating

20 lb P<sub>2</sub>O<sub>5</sub>/A Soil test Bray P-1: 7 ppm

Dale Blevins, Univ. of Missouri

pH: 5.9

#### **AVAIL RATE EFFECTS ON CORN**

#### Kansas

| Treatments        | V-6 Dry wt<br>lb/A | V-6 P Uptake<br>lb/A | Grain yield<br>bu/A |
|-------------------|--------------------|----------------------|---------------------|
| No P control      | 380                | 0.91                 | 103                 |
| MAP               | 501                | 1.34                 | 121                 |
| MAP + 1% Avail    | 592                | 1.61                 | 138                 |
| MAP + 0.75% Avail | 585                | 1.58                 | 136                 |
| MAP + 0.50% Avail | 620                | 1.73                 | 140                 |
| MAP + 0.25% Avail | 601                | 1.65                 | 137                 |
| LSD .10           | 32                 | 0.21                 | 13                  |

All P banded, 30 lb P2O5/A. Soil pH = 7.4; Bray P-1 P = 9 ppm

Location: Osage county, KS. Dr. Ray Lamond, Kansas State University

# WHAT ABOUT RESIDUAL EFFECTS OF AVAIL?

# AVAIL HAS NO RESIDUAL EFFECT Soybeans - Kansas

| Year 1 Treatment                                        | Year 2 Bean Yield |
|---------------------------------------------------------|-------------------|
| lb P <sub>2</sub> O <sub>5</sub> /A                     | bu/A              |
| 0                                                       | 58                |
| 30 MAP                                                  | 59                |
| 30 MAP + Avail                                          | 58                |
| 60 MAP                                                  | 59                |
| 60 MAP + Avail                                          | 60                |
| LSD <sub>.10</sub>                                      | NS                |
| Avail coated at 0.5%. Soil pH = 6.8. Bray 1-P = 25 ppm. | Gordon, KSU       |

# FOR CORN Minnesota

| P Source                            | P Uptake V-6 | Yield |
|-------------------------------------|--------------|-------|
| lb P <sub>2</sub> O <sub>5</sub> /A | g/12 plants  | bu/A  |
| 0                                   | <br>1.85     | 136   |
| 25 DAP                              | 1.77         | 151   |
| 25 DAP + polymer                    | 2.72         | 172   |
| 50 DAP                              | 2.17         | 155   |
| 50 DAP + polymer                    | 2.47         | 175   |
| LSD (0.10)                          | 0.71         | 18    |

P broadcast, 0.25 % polymer coating.

Soil pH: 7.3 Soil test P: 7 ppm Olsen.

Randall, Univ. of Minnesota



Tom Haigh—JRS Kansas and Dr. Barney Gordon KSU





### Avail Effects on Corn Grain Yield 2001-2003 Kansas



#### Corn Grain Yield, 2004 Scandia, KS



#### V6 Whole Plant P Uptake, 2004 Scandia, KS





Kansas State University NorthCentral R&D Center--2006

# STUDIES WITH SOYBEANS

## ENHANCING P AVAILABILITY FOR IRRIGATED SOYBEANS Kansas

| Treatments Ib P <sub>2</sub> O <sub>5</sub> /A | 2002 Grain Yield<br>bu/A | 2003 Grain Yield<br>bu/A |
|------------------------------------------------|--------------------------|--------------------------|
| Control                                        | <br>52d                  | 32d                      |
| 30 MAP                                         | 62c                      | 41c                      |
| 30 MAP + polymer                               | 70b                      | 57a                      |
| 60 MAP                                         | 62c                      | 47b                      |
| 60 MAP + polymer                               | 73a                      | 58a                      |

Duncan's multiple range test, 5%.

Gordon, Kansas State Univ.

P broadcast preplant. Soil test P: 38 ppm Bray 1. Soil pH: 6.8. 0.25% polymer.

### Avail Soybean Grain Yield 2002-2004



#### AVAIL POLYMER EFFECTS ON SOYBEANS Missouri – 2005

| <b>Treatments</b>                           | P        | P Uptake    | Yield     |
|---------------------------------------------|----------|-------------|-----------|
| Ib P <sub>2</sub> O <sub>5</sub> /A<br>bu/A | <b>%</b> | lb/A        |           |
| 0                                           | 0.250    | <b>2.62</b> | <u>51</u> |
| <b>50</b>                                   | 0.265    | 3.75        | <b>52</b> |
| 50 + Avail                                  | 0.315    | 4.95        | <b>56</b> |
| LSD <sub>.10</sub>                          | 0.048    | 0.78        | 2         |

P applied pre-plant.

Soil pH = 6.0

D. Dunn, Univ. of Missouri

## AVAIL EFFECTS ON SOIL TEST P

Missouri - 2005

| Treatment                           | Bray P-1    |  |  |
|-------------------------------------|-------------|--|--|
| Ib P <sub>2</sub> O <sub>5/</sub> A | lb/A        |  |  |
| 0                                   | <b>29.5</b> |  |  |
| <b>50</b>                           | <b>54.0</b> |  |  |
| 50 + Avail                          | <b>73.2</b> |  |  |
| LSD <sub>.10</sub>                  | <b>6.7</b>  |  |  |

Soybeans. pH = 6.0

D. Dunn, U. of Missouri

# POLYMER EFFECTS ON SOIL TEST P Rice-Missouri

|                                     | Soil test P - Post flood |            |  |
|-------------------------------------|--------------------------|------------|--|
| P                                   | (Bray 1, lb/A)           |            |  |
| Rate                                | Untreated Treated        |            |  |
| Ib P <sub>2</sub> O <sub>5</sub> /A | TSP                      | TSP        |  |
| Ō                                   | 27                       | 7.5        |  |
| 25                                  | 29.5                     | 33.0       |  |
| 50                                  | 31.8                     | 33.2       |  |
| 100                                 | 29.5                     | 42.0       |  |
| LSD <sub>.05</sub>                  | 7                        | <b>7.9</b> |  |

Soil pH 6.6

Dunn, Univ. of Missouri

#### 2004 Soil Test Values

Rice- Missouri



#### ENHANCING P AVAILABILITY FOR RICE

Missouri--2004

| P <sub>2</sub> O <sub>5</sub> Rate | Yield    | , bu/A       | Grain m  | oisture, %   |
|------------------------------------|----------|--------------|----------|--------------|
| lb/A                               | Uncoated | Avail Coated | Uncoated | Avail coated |
| 0                                  | <br>164  |              | 12.2     |              |
| 25                                 | 164      | 174          | 12.3     | 12.0         |
| 50                                 | 174      | 179          | 12.0     | 11.7         |
| 100                                | 183      | 182          | 12.1     | 12.2         |

Soil pH = 6.8; Soil test P = 38 ppm Bray-1

Dunn, Univ. of Missouri

P source = TSP preplant



## Avail Effects on Rice Missouri--2005



P source TSP

Pre-plant Bray 1 P = 8 lbs/a pH (salt) = 5.9

# POTATOES and ONIONS



## Potato Yield and Return Responses to Enhanced P Availability Idaho

| Treatment Applied       | Yield<br>CWT/A | Petiole P% | Gross<br>Return |
|-------------------------|----------------|------------|-----------------|
| Control                 | 311a           | .225d      | 1456            |
| MAP 60 lb P205/Ac       | 330ab          | .253cd     | 1546            |
| MAP 120 lb P205/Ac      | 344bc          | .275bc     | 1591            |
| MAP + Exp 60 lb P2O5/A  | 339ab          | .288ab     | 1575            |
| MAP + Exp 120 lb P2O5/A | 369c           | .308a      | 1791            |

Calcareous soil, Aberdeen, ID Jeff Stark, University of Idaho

#### 2006 Potato Grower Trials

- Farbo Farms
- Treasure Valley ID
- 180 lbs/ac P2O5 as
- MAP with and w/o Avail





**Crop Advisor Introduction of Avail SD to Growers-2006** 



10-34-0—Grower Standard Practice

**Avail SD w/10-34-0** 





#### RESEARCH CONTINUES

- Polymer rates in fluid starters
- P rates x polymer interactions
- Time of application..fall vs spring
- Large scale field trials
- Polymer effects on soil reaction products
- Other polymer applications

#### **Growers Comments**

 I went from 50 acres of onions w/Avail SD in 2005 to 1000 acres in 2006. I owe the positive change in my onion production and quality to Avail P Technology.

 Larry Meyers—L & L Farms—Othello WA August 2006



### New Rock Springs Applicator 11-52-0 w/Avail

- Avail (base)
- Metered application
- ½ gpt rate
- 2 x 250g totes
- 50g / RR car = 10 cars
- 2<sup>nd</sup> pump to be installed
   (as back-up)
- Replaces 2<sup>nd</sup> wax coating



**Avail Impregnation--RS** 



#### **Rock Springs Application**

- After Avail application....
- Ribbon Blender
- Thorough product mix
- 250 TPH
- No lost time at RS



#### Scandia, Hedges – Dry Transloads Avail (base) - Applications





#### **Economics**

- Grower costs of Avail is about .08/lb of P2O5
- Grower costs of Avail SD or Avail OS is about \$150.00/gallon and applied at either .5 % or 1.5% by volume.

#### SUMMARY

- Polymer coatings of P materials have been and continue to be effective
- Slowed solubility a factor in lessening germination damage in sensitive crops
- Delayed P fixation reactions improve P use efficiency
- Cost effective
- Large scale use underway—5 million + acres 2007

#### Thank You

terry.tindall@simplot.com