

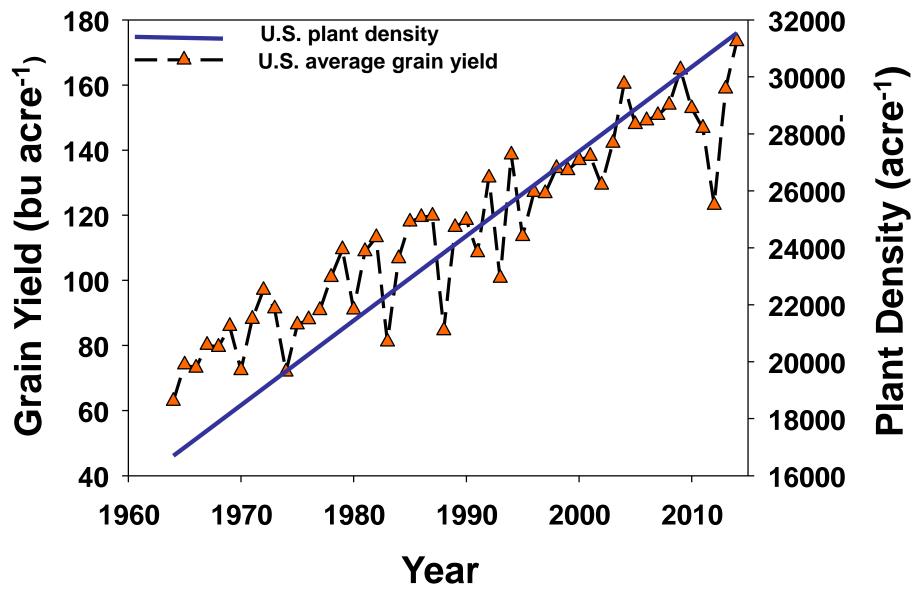
Fred Below

Professor University of Illinois

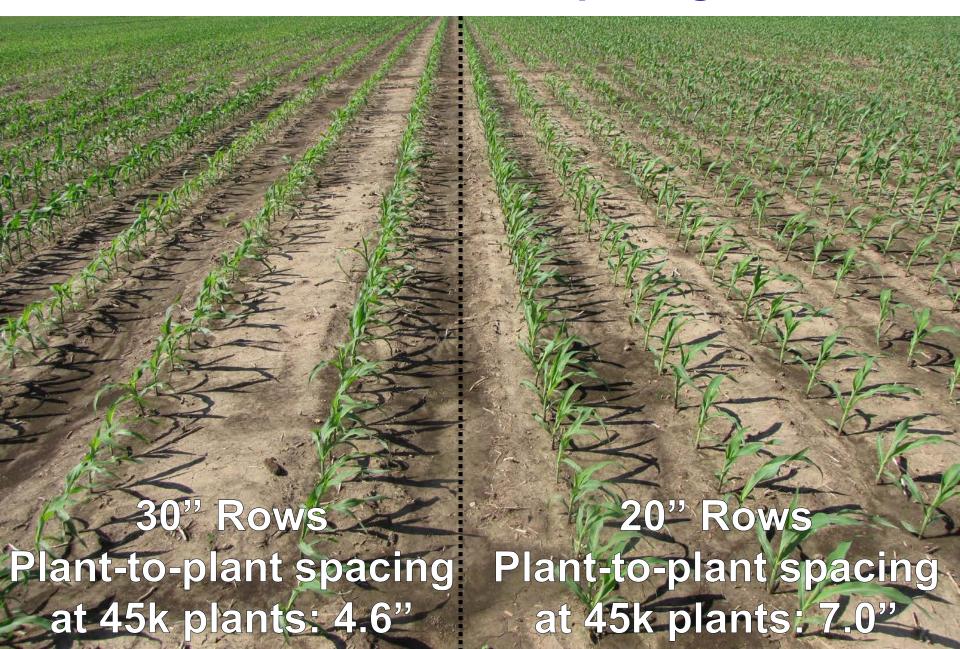
U.S. Fertilizer Demand and Nutrient Use Issues Session

Fertilizer Outlook and Technology Conference Jacksonville, FL November 10, 2015

The Corn Yield Gap


- US average corn yield of about 170 bushels per acre
- All 18 National Corn Growers
 Contest winners in 2014
 exceeded 300 bushels, 6
 exceeded 400 bushels
- New World Record of 503.7190 bushels per acre

Strategy for Winning the Corn Yield Contest


- •Feed (better plant nutrition) and protect a much higher density of plants of the best 'racehorse' hybrids
- •Make sure the crop is never stressed

How Have Corn Yields Increased?

Is the Future of Corn Row Spacing 20 Inches?

High Plant Density = Smaller Roots

Normal Population 32,000 plants/acre

High Population 45,000 plants/acre

Fertility Needs for Corn Based on Soil Test Data

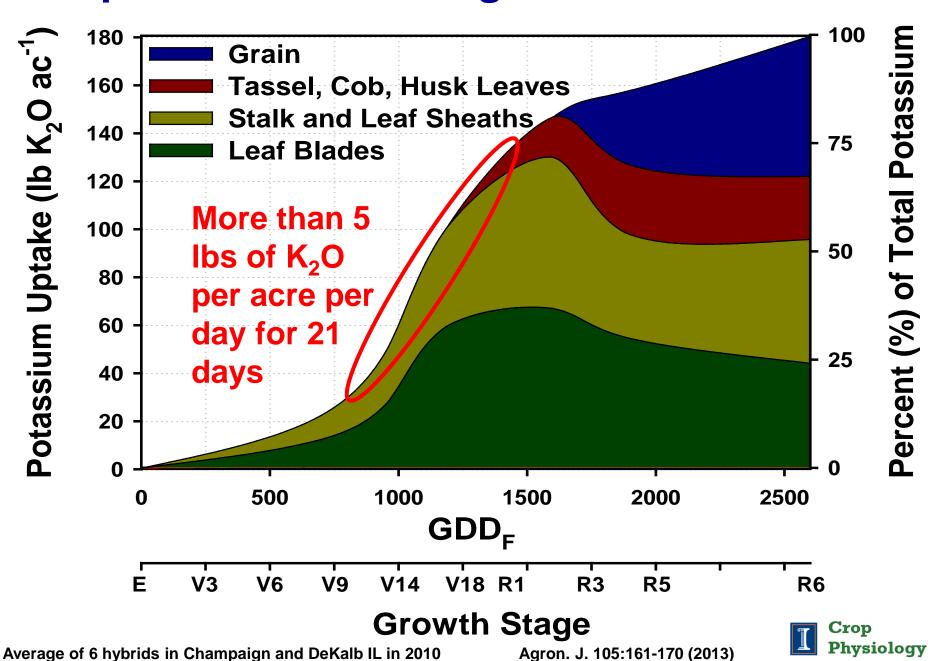
- Soil test values calibrated to yield in the 60's and 70's
- Do higher plant populations and more productive germplasm necessitate better fertilization strategies for corn?

Corn Fertility Recommendations

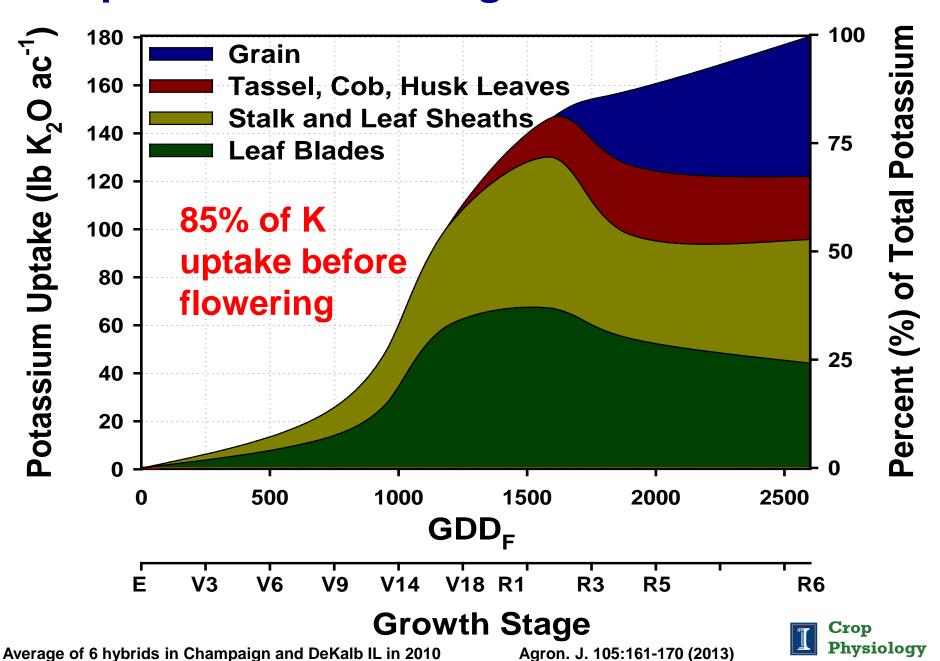
- Current = N based mostly on expected yield and P and K based on soil tests
- Future = Use application and fertilizer technologies to supply required crop nutrition

Nutrition Needed for 230 Bushel Corn

Nutrient	Required to Produce	Removed with Grain	Harvest Index	
	lbs/a	lbs/acre		
N	256	148	58	
P_2O_5	101	80	79	
K_2O	180	58	32	
S	23	13	57	
Zn (oz)	7.1	4.4	62	
B (oz)	1.2	0.3	23	



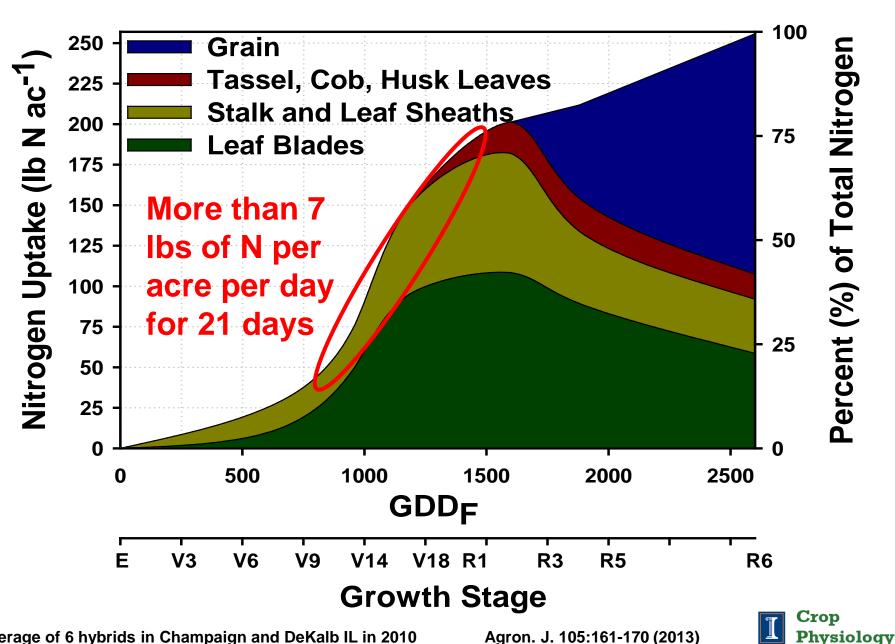
Nutrition Needed for 230 Bushel Corn

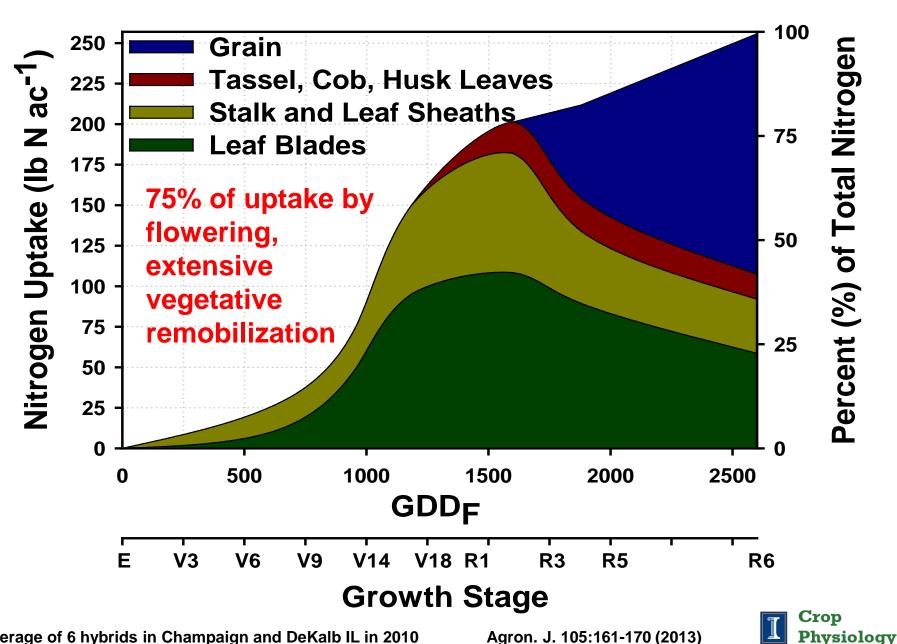

Nutrient	Required to Produce	Removed with Grain	Harvest Index
	lbs/a	acre	%
N	256	148	58
P_2O_5	101	80	79
K ₂ O	180	58	32
S	23	13	57
Zn (oz)	7.1	4.4	62
B (oz)	1.2	0.3	23

K Uptake & Partitioning for 230 Bushel Corn

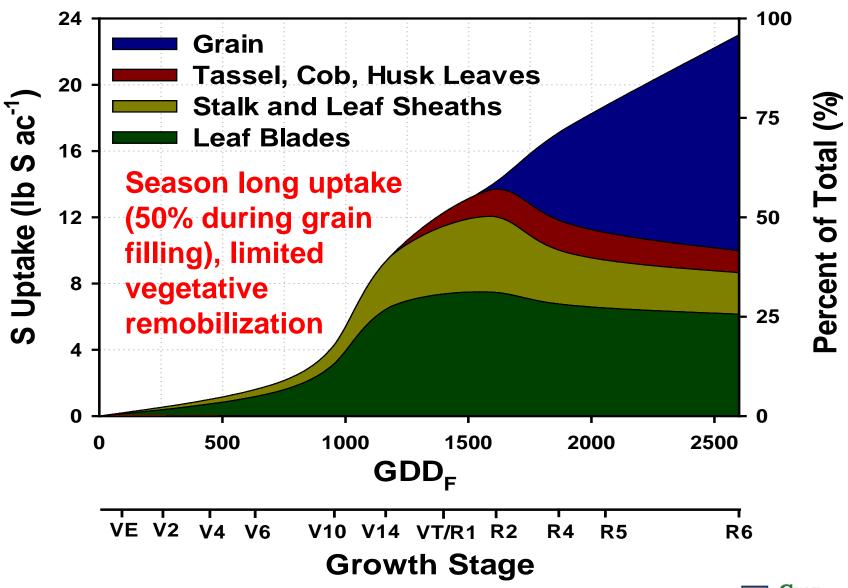
K Uptake & Partitioning for 230 Bushel Corn

Nutrition Needed for 230 Bushel Corn


Nutrient	Required to Produce	Removed with Grain	Harvest Index	
	lbs/a	lbs/acre		
N	256	148	58	
P_2O_5	101	80	79	
K_2O	180	58	32	
S	23	13	57	
Zn (oz)	7.1	4.4	62	
B (oz)	1.2	0.3	23	

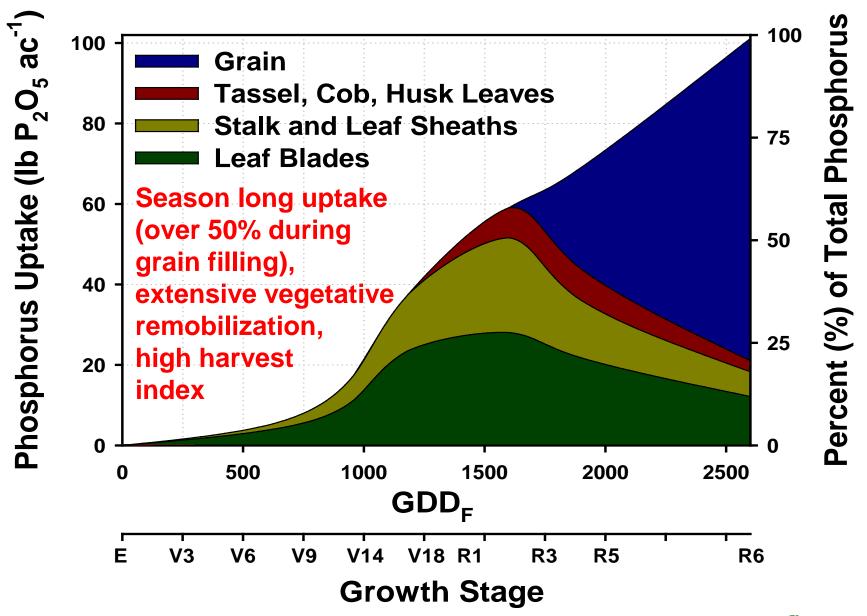

Nutrition Needed for 230 Bushel Corn

Nutrient	Required to Produce	Removed with Grain	Harvest Index
	lbs/a	acre	%
N	256	148	58
P_2O_5	101	80	79
K_2O	180	58	32
S	23	13	57
Zn (oz)	7.1	4.4	62
B (oz)	1.2	0.3	23


N Uptake & Partitioning for 230 Bushel Corn

N Uptake & Partitioning for 230 Bushel Corn

S Uptake & Partitioning for 230 Bushel Corn



Nutrition Needed for 230 Bushel Corn

Nutrient	Required to Produce	Removed with Grain	Harvest Index
	lbs/a	acre	%
N	256	148	58
P_2O_5	101	80	79
K_2O	180	58	32
S	23	13	57
Zn (oz)	7.1	4.4	62
B (oz)	1.2	0.3	23

P Uptake & Partitioning for 230 Bushel Corn

Nutrition Needed for 230 Bushel Corn

Nutrient	Required to Produce	Removed with Grain	Harvest Index	
	lbs/a	lbs/acre		
N	256	148	58	
P_2O_5	101	80	79	
K_2O	180	58	32	
S	23	13	57	
Zn (oz)	7.1	4.4	62	
B (oz)	1.2	0.3	23	

Feed the Plant Not the Soil

Better Fertilizer (Right Source)

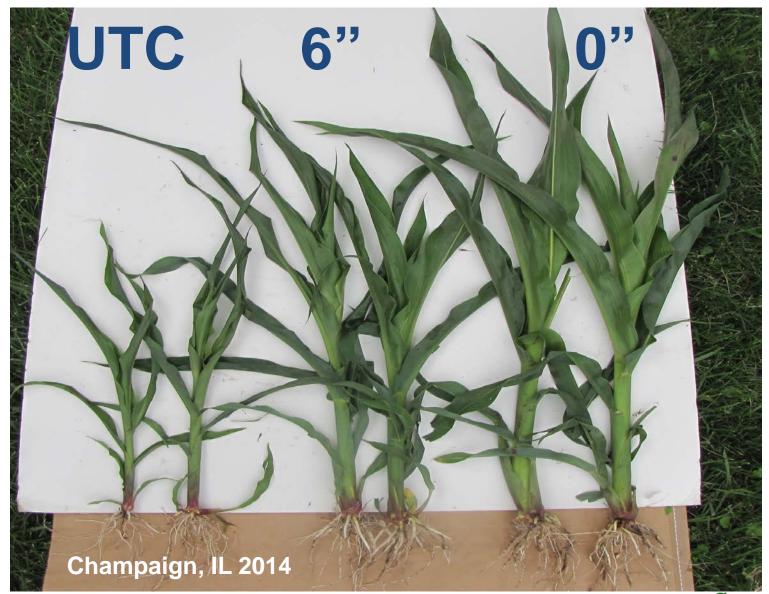
 Supply N, P, S, Zn in a way that keeps or makes them plant available

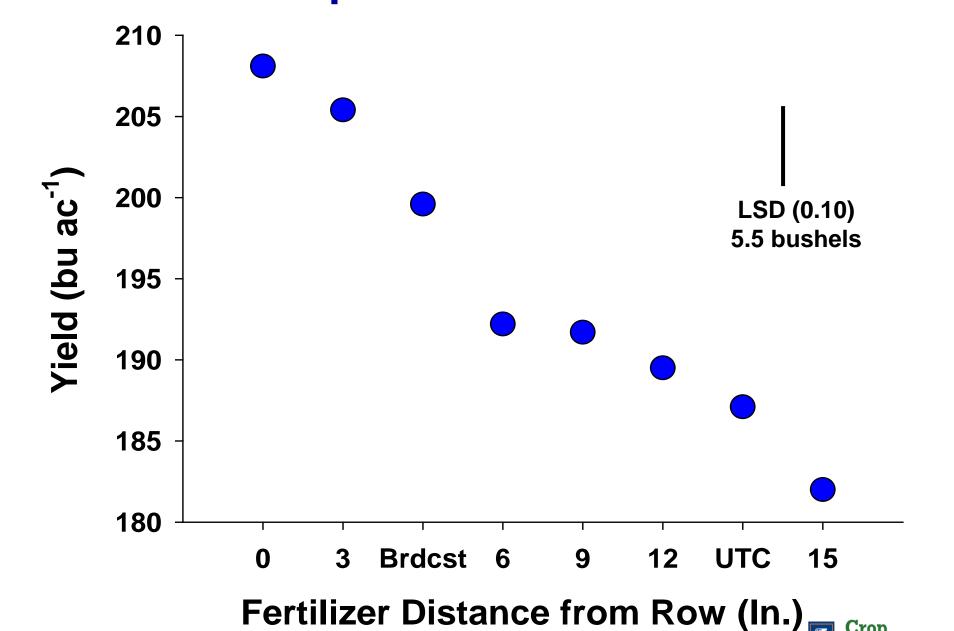
Better Application (Right Place)

Band apply directly under the crop row

Banding Fertilizer 4-6 Inches Deep Directly Under the Future Crop Row

Seeding Corn Crop 2 Inches Deep Directly Over the Fertilizer Band


Improved Growth with Banded Fertility



Growth Response to Banded Fertility

V6 growth stage

Corn Yield Response to Fertilizer Placement

Physiology

Champaign, IL 2014

Most Roots Expand Only 6 Inches Horizontally

Improved Growth with Banded Fertility

No Corn Plant Left Behind

Do Growers Adequately Fertilize Soybean?

The Soybean Yield Gap

- US average soybean yield of about 45 bushels per acre
- World record soybean yield of 161 bushels
- Illinois record of 103.95 bushels in 2014

Typical Fertilization for Corn and Soybean in Illinois

180 lbs N, 90 lbs P₂O₅ and 100 lbs K₂O per acre applied to corn. No S or micronutrients

No fertilizer applied to soybean

Nutrient Uptake and Removal by 60 Bushel Soybean

Nutrient	Required to Produce	Removed with Grain	Harvest Index
	lb a	acre ⁻¹	%
N	245	179	73
P_2O_5	43	35	81
K ₂ O	170	70	41
S	17	10	61
Zn (oz)	4.8	2.0	44
B (oz)	4.6	1.6	34

Soybean Gets Some N from Fixation by Nodules

Nutrient Uptake and Removal by 60 Bushel Soybean

Nutrient	Required to Produce	Removed with Grain	Harvest Index
	lb a	acre ⁻¹	%
N	245	179	73
P_2O_5	43	35	81
K ₂ O	170	70	41
S	17	10	61
Zn (oz)	4.8	2.0	44
B (oz)	4.6	1.6	34

Nutrient Uptake and Removal by 60 Bushel Soybean

Nutrient	Required to Produce	Removed with Grain	Harvest Index
	lb a	acre ⁻¹	%
N	245	179	73
P_2O_5	43	35	81
K ₂ O	170	70	41
S	17	10	61
Zn (oz)	4.8	2.0	44
B (oz)	4.6	1.6	34

Typical Fertilization for Corn and Soybean in Illinois

180 lbs N, 90 lbs P₂O₅ and 100 lbs K₂O per acre applied to corn. No S or micronutrients

No fertilizer applied to soybean

P and K Uptake and Removal by 60 bu Soybean vs 230 bu Corn

Nutrient	Requ to Pro		Remo		Rema Sto	
	Corn	Soy	Corn	Soy	Corn	Soy
			lb a	cre ⁻¹		
P_2O_5	101	43	80	35	21	8
K ₂ O	180	170	56	70	124	100

Soybean Plants Respond to Fertility

Conclusions

- Mineral nutrients are not acquired at the same time or used in the same way
- Mineral nutrients with a high Harvest Index like N, P, and S, are the most important for high corn and soybean yields

Conclusions

 Soil test values may not be calibrated for the higher plant populations being used for corn, and the greater yield potential of modern corn hybrids and soybean varieties

Conclusions

- Many Illinois growers in a corn soybean rotation are removing more P and K than they are replacing
- There are yield opportunities in corn and soybean from fertilizing with the right source in the right place

Acknowledgements Personnel

- Brad Bandy
- Tryston Beyrer
- •Tom Boas
- Ryan Becker
- Ross Bender
- Brad Bernhard
- Fernando Cantao
- Narjara Cantelmo
- Renato Carmargos
- Laura Gentry
- Claire Geiger
- Jason Haegele
- Andrew Harmon
- Cole Hendrix
- Adam Henninger

- Brandon Litherland
- Shelby Mann
- Jack Marshall
- Adriano Mastrodomenico
- Katie Parker
- Ellie Raup
- Alvero Santos
- Ana Scavone
- Juliann Seebauer
- Jiying Sun
- Martín Uribelarrea
- Mike Vincent
- Alison Vogel
- Kyle Vogelzang
- Wendy White

Acknowledgements Financial Support

- AGCO
- Agricen
- •Agrium
- AgroFresh
- Albion
- BASF
- Calmer Corn Heads
- Crop Production Services
- Dawn Equipment
- Dow AgroSciences
- DuPont Pioneer
- Fluid Fertilizer Foundation
- Goemar
- •GrowMark
- Honeywell
- Helena Chemical Company
- •Illinois Soybean Association

- •IPNI
- John Deere
- Koch Agronomic Service
- Midwestern BioAg
- Monsanto
- Mosaic
- Nachurs
- Netafim
- Orthman
- Rentech
- Syngenta
- Stoller Enterprises
- Valent BioSciences
- West Central
- WinField Solutions
- •Wolf Trax
- •Wyffels Hybrids

Very Special Thanks

- Harry Vroomen
- The Fertilizer Institute

For more information:

Crop Physiology Laboratory at the University of Illinois

http://cropphysiology.cropsci.illinois.edu

