

Rob Zemenchik

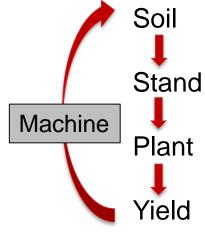
Global Marketing Manager
Advanced Farming Systems, Case IH

Soil Health and Farm Equipment Technology

Fertilizer Industry Round Table

How Technology is Impacting Soil Health
- An Equipment Industry Perspective

Dr. Rob Zemenchik
Case IH – Nov 12, 2015 – Jacksonville, FL USA

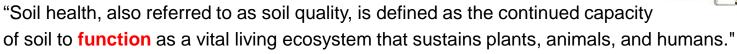


Soil Health and Equipment Technology

Customer delivery systems for the soil-crop ecosystem

Soil Quality and Soil Health Definitions.

USDA National Soil Tilth Lab.


(Bedrock

Soil Quality, Definition V 1.0:

"The capacity of a specific kind of soil to function, within natural or managed ecosystem boundaries, to sustain plant and animal productivity, maintain or enhance water and air quality, and support human health and habitation"

- (SSSAJ. Vol 61: 4-10., Karlen et al., 1997).

Soil Health, Definition V 2.0: Latent -> dynamic

- (USDA NSTL, 2015).

 "Regulating water, sustaining plant and animal life, filtering and buffering potential pollutants, cycling nutrients, physical stability and support."

"Soil is an ecosystem that can be managed to provide nutrients for plant growth, absorb and hold rainwater for use during dryer periods, filter and buffer potential pollutants from leaving our fields, serve as a firm foundation for agricultural activities, and provide habitat for soil microbes to flourish and diversify to keep the ecosystem running smoothly."

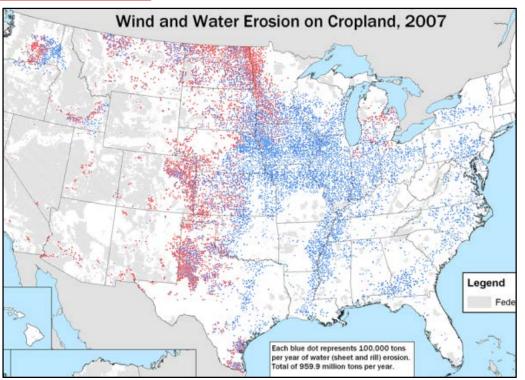
Soil Health Assessment

Cannot be measured directly. Rely on indicators.

- Soil organic matter => nutrient retention; soil fertility; soil structure; soil stability; and soil erosion
- Physical: bulk density, infiltration, soil structure and macropores, soil depth, and water holding capacity => retention and transport of water and nutrients; habitat for soil microbes; estimate of crop productivity potential; compaction, plow pan, water movement; porosity; and workability
- Chemical: electrical conductivity, reactive carbon, soil nitrate, soil pH, and extractable phosphorus and potassium => biological and chemical activity thresholds; plant and microbial activity thresholds; and plant available nutrients and potential for N and P loss
- Biological: earthworms, microbial biomass C and N, particulate organic matter, potentially mineralizable N, soil enzymes, soil respiration, and total organic carbon => microbial catalytic potential and repository for C and N; soil productivity and N supplying potential; and microbial activity measure

Reductionist approach

Risk in overlooking "epiphenomonae" – big picture


What's Missing???

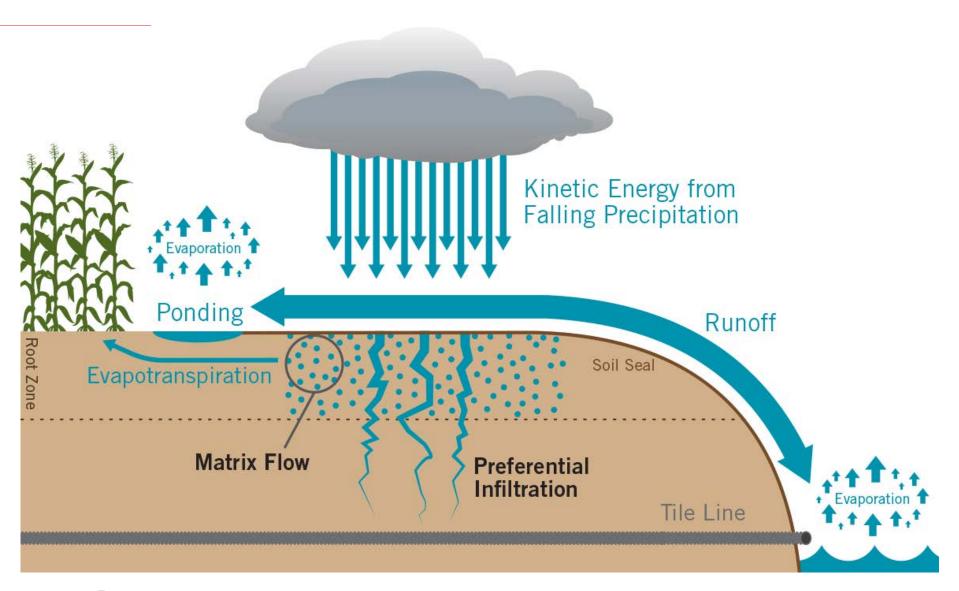
U.S. Soil Erosion. Continues to jeopardize soil health CASE

CASE III

Challenging the concept of "T" – a depletion schedule for topsoil.

Unchecked soil erosion, Providence Canyon, GA

- Current real rate of T = 0.5 t/ac, not 2-5 t/ac
- Current rate of erosion >5 t/ac
 Dr. R. Cruise, Iowa State Univ.

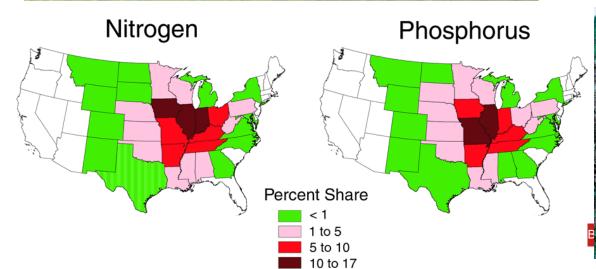

50% of IA topsoil has been lost this century At current rates, "Topsoil will be gone by 2075"

- WI = lost acre furrow slice by WW2 F.H. King
- IA = 15M tons of soil lost in 2014

USLE, RUSLE, WEQ, WEPS

Runoff and the soil hydrosphere

Estimated N + P Source Loads by State


Spatially Referenced Regression On Watershed Attributes (SPARROW). 425 stations.

- Dead zone now the size of CT
- appx 5,500 sq miles, 3.5M ac

BAP = DP + PP Effective depth of interaction (EDI)

Algae blooms in Lake Erie, 2014

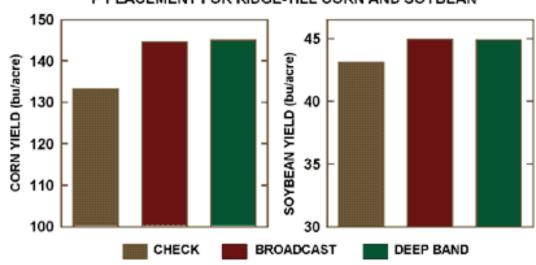
400,000 people had no safe drinking water Aug 2014, National Guard called out.

- 70 people hospitalized
- Microcystin levels 100% above WHO limit

 Class of toxins produced by certain freshwater
 Cyanobacteria, primarily Microcystins. Toxic to the liver.

What can agriculture do now? 4R Delivery Systems

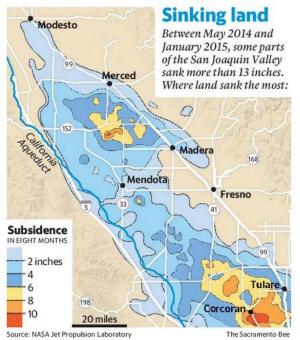
c. 1994



- Solutions that build on the <u>4R concept</u> as best practices
- Right rate
- Right time
- Right placement
- Right product

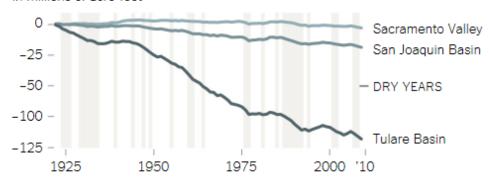
85-90% field efficiency required

P PLACEMENT FOR RIDGE-TILL CORN AND SOYBEAN



Weather Extremes Compound Soil Health Risks.

California drought = subsidence 2"/mo, South Carolina floods, New Jersey hurricanes

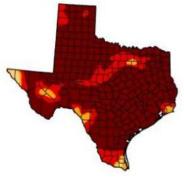


U.S. Drought Monitor

September 6, 2011

Change in the amount of groundwater

In millions of acre-feet


Sources: California Department of Water Resources; NASA; U.S. Geological Survey; Public Pol

DO Abnormally Dry D3 Drought - Excreme
D1 Drought - Mederate D2 Drought - Exceptions
D2 Drought - Severe

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

http://drought.unl.edu/dm

Released Thursday, September 8, 2011 National Drought Mitigation Center,

California desertification

Soil Health: Soil Health Risks.

Soil ecosystems out of balance present risks, do not "run smoothly" or sustain man, plants, animals.

Palmer Amaranth Resistance

Amaranthus Palmeri: Highly resistant, mobile

- Male or female
- 7-10' tall
- Spread by seed or pollin (>164')
- > 1,000,000 viable seeds by female plants
- \$75-100/ac in GA alone, \$>1B in last 10 years.

32 States: confirmed resistance

2005 - United States (Georgia)

2005 - United States (North Carolina)

2006 - United States (Arkansas)

2006 - United States (South Carolina)

2006 - United States (Tennessee)

2007 - United States (New Mexico)

2008 - United States (Alabama)

2008 - United States (Georgia) *Multiple - 2 SOA's

2008 - United States (Mississippi) *Multiple - 2 SOA's

2008 - United States (Missouri)

2009 - United States (Tennessee) *Multiple - 2 SOA's

2010 - United States (Georgia) *Multiple - 3 SOA's

2010 - United States (Illinois)

2010 - United States (Kentucky)

2010 - United States (Louisiana)

2010 - United States (Ohio)

2010 - United States (South Carolina) *Multiple - 2 SOA's

2011 - United States (Kansas)

2011 - United States (Michigan)

2011 - United States (Texas)

2011 - United States (Virginia)

2012 - United States (Arizona) *Multiple - 2 SOA's

2012 - United States (Delaware)

2012 - United States (Indiana)

2013 - United States (Florida)

2013 - United States (Florida) *Multiple - 2 SOA's

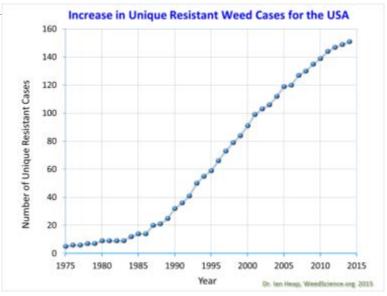
2013 - United States (Illinois) *Multiple - 2 SOA's

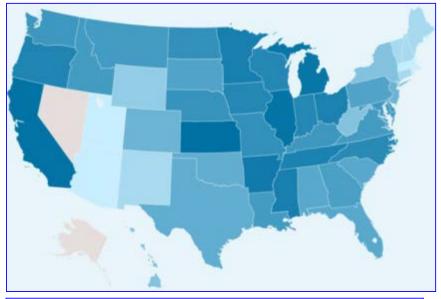
2013 - United States (Pennsylvania)

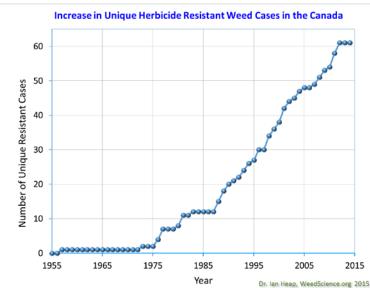
2013 - United States (Wisconsin)

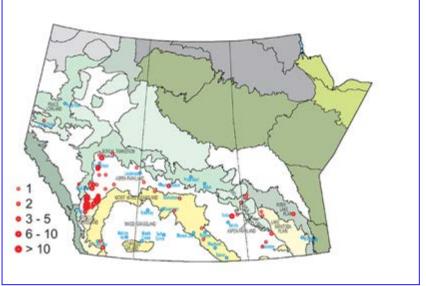
2014 - United States (Delaware) *Multiple - 2 SOA's

2014 - United States (Maryland) *Multiple - 2 SOA's

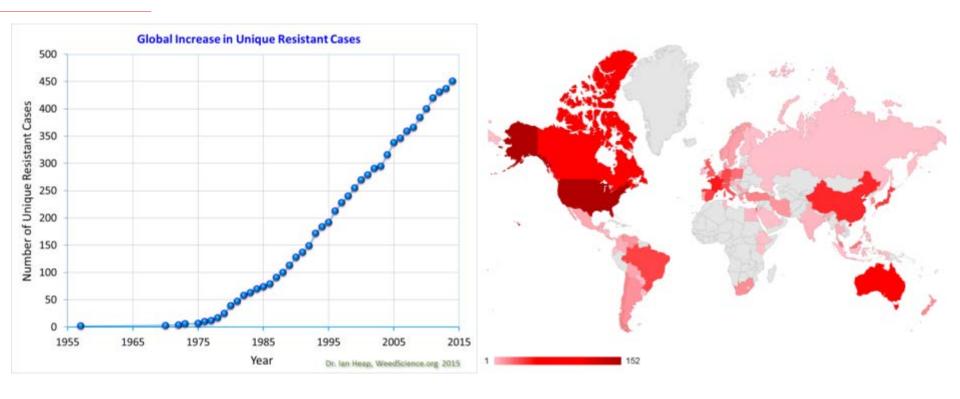

2014 - United States (New Jersey)




U.S. and Canada Weed Resistance



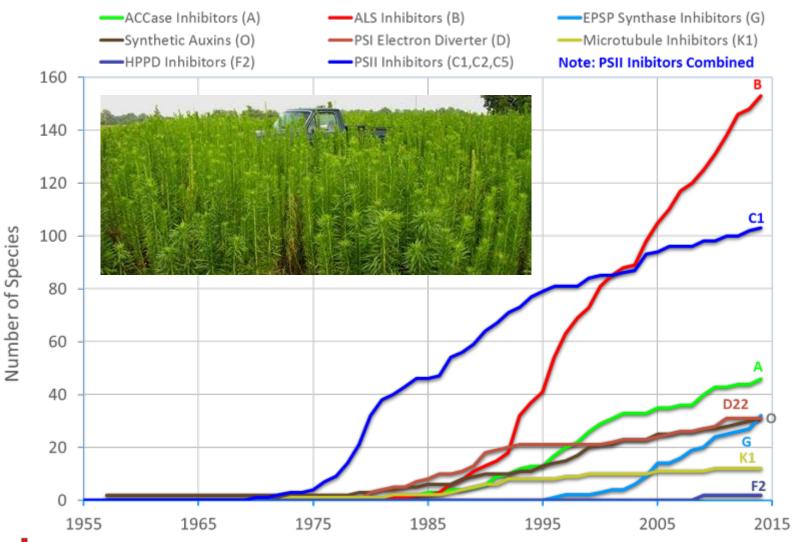
Does the Soil Health Assessment account for resistance?



Worldwide Global Weed Resistance

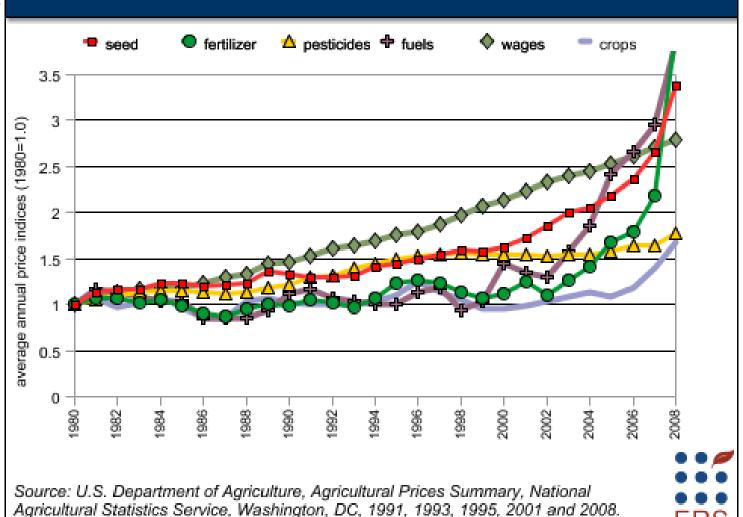
Prolonged use of same tools creating widespread resistance issues

Is soil health getting better or worse in production agroecosystems?



Resistance by Mode of Action

Number of Resistant Species for Several Herbicide Sites of Action (HRAC Codes)


U.S. Crop Input Inflation

Non-pesticide inflation, relative affordability of pesticides.

Prices paid indices for inputs and prices received for all crops, 1980-2008

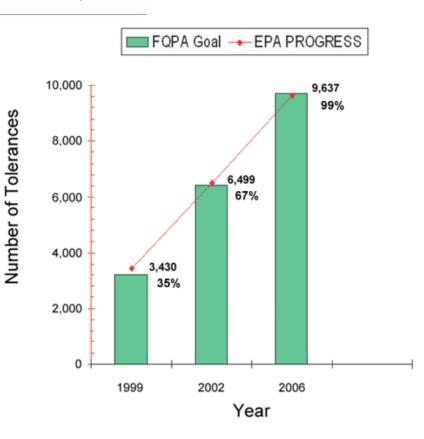
Herbicide Persistence and Toxicity

Toxicity, persistence in soil, leaching potential

Common Name	Trade Name	Oral LD50 (1)	Dermal LD50 (1)	EPA Toxicity (2)	Toxicity to Beneficials (3)	Persistance in Soil (4)	Leaching Potential (4)	EIQ (5)
Bentazon	Basagran	1100	>2500	III	15	Low	Small	20.3
Carfentrazone	Aim	5143	>4000	IV	23.6	Low	Small	21.5
Clethodim	Prism/Select	2920	>5000	II	15	Low	Small	17
Dichlobenil	Casoron	3160	1350	NDA	19.35	NDA	Small ^{eiq}	20.8
Diruron	Karmex	>5000	>5000	III	9	High	Med	20.5
Fluazifop	Fusilade	2450	>2420	IV	15	Low	Small	17
Glufosinate	Rely	2000	>2000	NDA	51	NDA	High ^{eiq}	28.3
Glyphosate	Roundup	5600	>5000	II	15	Mod	Low	15.3
Hexazinone	velpar	1690	>5278	I	15	High	Med	18
Isoxaben	Gallery	>10000	>2000	NDA	NDA	NDA	NDA	NDA
Napropamide	Devrinol	>5000	>4640	III	10.7	Mod	Med	18.8
Norflurazon	Solicam	>8000	>20000	NDA	17	NDA	High ^{eiq}	12.6
Oryzalin	Surflan	>10000	>2000	IV	9.3	Mod	Med	19.4
Paraquat	Gramoxone	150	236	l l	19.95	High	Small	31
princep	Simazine	>5000	>3100	1	14.2	Mod	Small	15.7
Pronamide	Kerb	8350	>3160	I	51	Mod	Small	36
Sethoxydim	Poast	3200	>5000	1	14.2	Mod	Small	15.7
Terbacil	Sinbar	>5000	>5000	1	12.5	High	Large	16.8

This table is a compilation of information from many sources.

- (1) LD50 values taken from "The Pesticide Book" by George Ware and "Pesticide Information Profiles", EXTOXNET.
- (2) Toxicity Rating is based on acute oral LD50 values ("I" is most toxic; "IV" is least toxic).
- (3) Relative hazard to applicators is based on dermal exposure (source EB 1491).
- (4) Beneficial toxicity based on Cornell EIQ (higher numbers equate to greater likelihood for killing arthropod natural enemies)
- (5) Leaching Potential rating from Washington State Water Quality Guide and "Pesticide Information Profiles", EXTOXNET.
- (6) Groundwater leaching potential based on Cornell EIQ (1:small; 5:large).
- (7) Comments regarding groundwater based on "Pesticide Information Profiles", EXTOXNET.



WASHINGTON STATE

Food Quality Protection Act, 1996

Required reassessment of tolerances for all residues by 2006

By 2006, EPA had cancelled 4,400 pesticides from a universe of 17,592. Today, there are over 1,055 active ingredients registered as pesticides (USDA).

USDA: Before allowing the use of a pesticide on food crops, EPA sets a tolerance, or maximum residue limit, which is the amount of pesticide residue allowed to remain in or on each treated food commodity. The tolerance is the residue level that triggers enforcement actions. If in excess, seizure results

To make this finding, EPA considers:

- 1. the toxicity of the pesticide and its break-down products
- 2. how much of the pesticide is applied and how often
- 3. how much of the pesticide (i.e., the residue) remains in or on food by the time it is marketed and prepared

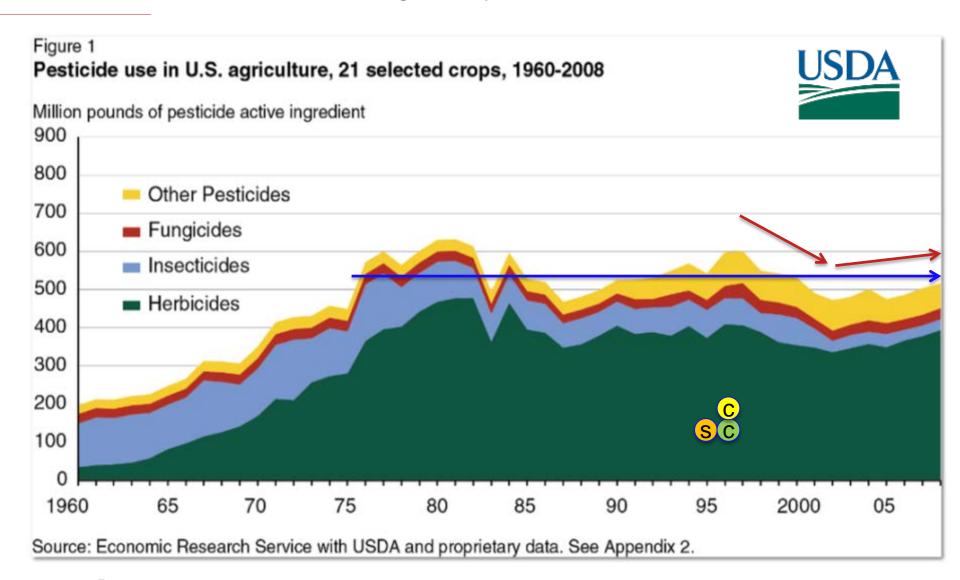
No standard for the soil has been set. (Toxicity x Persistence) = (T x P) / t

where T = EPA toxicity class (I, II, III, IV...) = 4, 3, 2, 1, respectively) where P = EPA persistence class (H, M, L = 3, 2, 1 respectively) where t = total calendar years since each a.i. application

The higher the demerit score, the <u>lower</u> the implied soil health

LD50 Paradigm Outdated

 $t_{(yr)}$ to kill 50% of the test group (1927)


Routes of Exposure	Toxicity Cat. I	Toxicity Cat. II	Toxicity Cat. III	Toxicity Cat. IV	
Oral LD ₅₀	Up to and including 50 mg/kg	50–500 mg/kg	500–5,000 mg/kg	>5,000 mg/kg	
Inhalation LC ₅₀	Up to and including 0.2 mg/l	0.2–2 mg/l	2–20 mg/l	>20 mg/l	
Dermal LD ₅₀	Up to and including 200 mg/kg	200–2,000 mg/kg	2,000–20,000 mg/kg	>20,000 mg/kg	
Eye Effects	Corrosive corneal opacity not reversible within 7 days	Corneal opacity reversible within 7 days; irritation persisting for 7 days	No corneal opacity; irritation reversible within 7 days	No irritation	
Skin Effects	Corrosive	Severe irritation at 72 hours	Moderate irritation at 72 hours	Mild or slight irritation at 72 hours	
Signal Word	DANGER POISON	WARNING	CAUTION	CAUTION	

U.S. Pesticide Application Rates

What has been the net effect of transgenic crops?

New Tools: RNA-Interference Based Insecticides

Gene silencing technique, "quelling", "knockout." Small, post-transcriptional RNA's that bind to mRNA's that promote enzyme cleavage and suppress gene expression

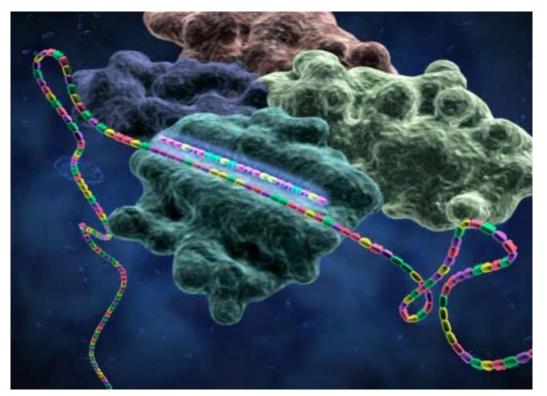


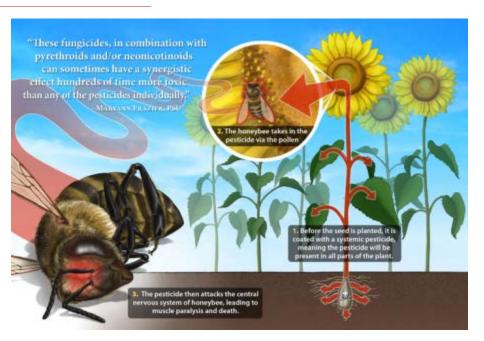
Photo credit: gmoevidence.com

Benefits:

- Can be imparted to existing genetics
- Delayed onset of Cry resistance
- Selectively lethal to target organisms
- Shown to reduce enzyme translation
- Stops gossypol terpenoids in cotton

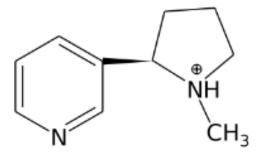
Risks:

- Off-target gene silencing in target organism
- On-target gene silencing in non-target organisms
- Immune response stimulation
- Saturation of cellular RNA machinery
- Persistence of RNA's in the soil-water
- Toxicity assessment techniques


What will be the delivery system?

Honeybees and Neonicotinoids

Planter vacuum modification in 2015. New formulae, less prone to blowing


Tony Linka, Illustration

Neonicotinoids persist many years in soil (>6 yrs) and systemically absorbed by succession plants

Planters must be modified for the 2016 crop year

- Non-graphite lubricant
- Downward fan ventilation

Neonicotinoid	Aerobic half-life in soil		
acetamiprid	1-8 days		
clothianidin	148-1155 days		
dinotefuran	138 days		
imidicloprid	40-997 days		
thiacloprid	1-27 days		
thiamethoxam	25-100 days		
SOURCE: FDA			

source: EPA

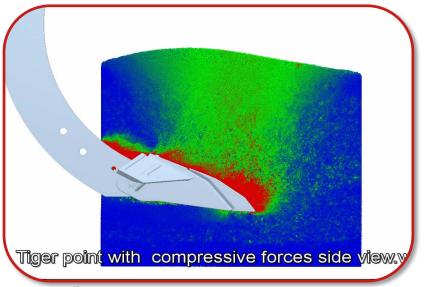
Next Generation Farm Management Solutions

Efficient Power, Agronomic Design, Advanced Farming Systems,

Scale and Productivity

Flexibility, Prediction, and Control

Improved Soil Management tools



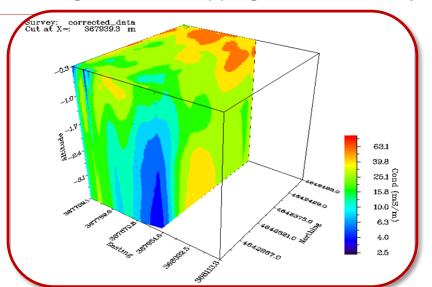
Next generation ecolo-tiger: 7th-gen 870 in 2009, 8th-gen 975 in 2013.

Improved Crop Residue Management

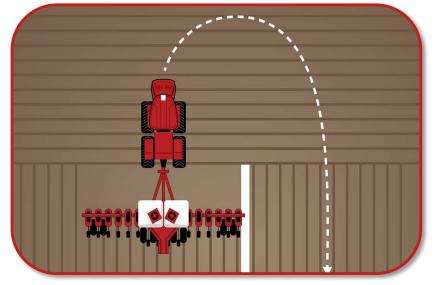
- Control, rather than subdue residue cover
- ~20% more cover than prior models
- High residue systems
- Improved residue clearance
- Level output for less Spring tillage
- Reduced sealing and runoff potential

Soil and draft-efficient tillage points

- Maximize lift dynamics
- Optimize draft efficiency
- Targeted fracture
- Less re-compaction
- Maintain more soil structure
- Improved fuel use



Improved Soil Analysis and Machine Output

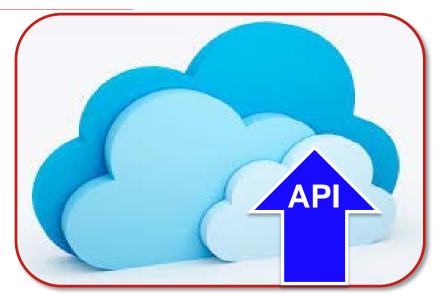

Next generation mapping solutions and dynamic modeling. Machine performance.

Enhanced soil modeling

- Full root zone to 10' deep
- Correct historical mismapping (~20%)
- Fertility management
- Multi-hybrid strategies
- VRT rec maps

Automated machine tasks

- Continue to evolve
- End of row functionality
- Eliminate over-application
- Enhance input utilization
- Productivity and profitability



Next-Gen Data Management and Guidance

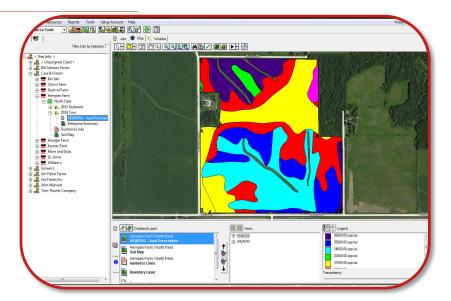
Data value analysis and increased guidance adoption

Application Programming Interfaces

- Data storage and value definition
- Authorized access
- 3rd party interfaces, ease of data flow
- Rec map generation
- Eg. Decision making tools
- Eg. As-applied record keeping
- Eg. Productivity logistics

RTK+ Cellular Network Correction

- Lower cost than 450/900 radio
- NTRIP, no line of sight dependency
- Open architecture: RTCM
- Not point to point
- Disruptive technology



Mapping Technology

In time, every machine will accept or generate both "rec" and "as-applied maps"

Automated rec maps

- Inputs spatially matched to field conditions
- Drives efficiencies
- Improves resource allocation
- Reduced risk of adverse outcomes
- Profitability

Precise Section Control

- Automated row shutoff
- Reduced overlap, over-application
- Reduced input costs
- Crop protection and harvest efficiencies

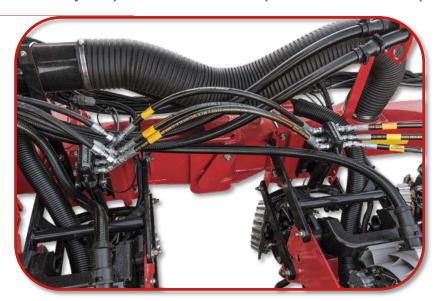
Seeding Technology

AccuSection, Variable Rate, Turn Compensation, small seed singulation

AccuSection Control

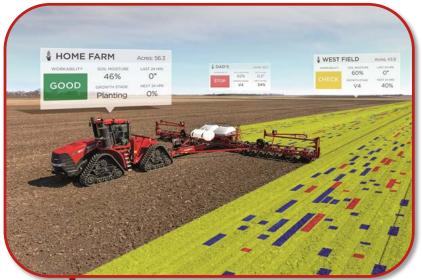
- Independent seed meter sections
- Reduced overlap
- Turn compensation
- Fertilizer use efficiency
- App based ECU
- Transferable software

Photo credit: Soytech



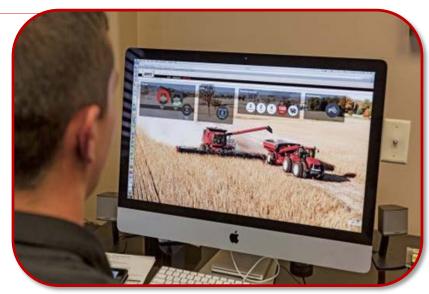
"Live" Planter Technology With Real-Time Mapping.

Analyze planter row unit performance, export/stream and map data.



- Downpressure sensing and mapping
- Seed rates matched to soil types
- Automatic instead of manual adjustments
- As-applied maps in near real time
- Row-to-row independence and control

In-cab tablet showing real-time map



Remote Machine Supervision and Coordination

Next generation machine control, support and efficiency.

Telematics and fleet management

- Remote fleet monitoring and adjustment
- Manage the output, not just the task
- Coordination and cohesion
- Reduced waste, improved performance
- Site specific control, real-time

Harvest and Row Track Technology

CASE III

Reduced soil compaction to target of 1.3 g cm⁻³

Track Technology

- Reduced compaction
- Wider operating envelope
- Timely operations and harvests
- Tractive efficiency
- Water infiltration and runoff
- Crop performance and yield
- Productivity

Harvest and Applicator Logistics

- Reduced collisions
- Reduced fatigue
- Crop loss and spillage
- Improved fuel use
- Productivity logistics
- Coordinated Vehicle Control

Seeding and Nutrient Application Technology

Reduced rates, field loading and cost

Nutriplacer 2800 liquid section control

- Improved NUE, 4R's
- N timing and placement
- Variable rate technology

Precision Disk Drill 500/T for Cover Crops

- Retain BAP/DAP on landscape
- Protect soil from Ek
- Rotation effects

ISOBUS Class-3

CASE

Implement data input for improved vehicle performance

Implications for forage management

- Reduced operator fatigue
- Data-based decision models
- Charge control
- Slice control
- Consistent product
- Improved efficiency and productivity

Implement dictates tractor speed

- Reduced clutching and breaking
- Reduced operator fatigue
- Consistent output
- Improved economy and performance

2015 Optum

Augmented Reality.

Uses sight/sound/other for enhanced graphical depiction or animation within view.

Release 2 screws

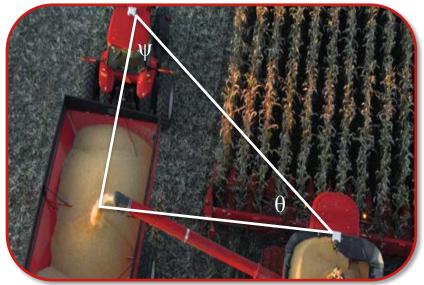
Release 2 screws

Remove farrows

- High speed crop scouting
- Technical setup and repair
- Operator training
- Interactive mapping
- Machinery data immersion
- Observation enhancement
- NIR-NDVI mode
- Fertility mode (N, P, K, Fe, etc.)
- Operational training

Photo credit: BMW

Engine, Cooling and Hydraulic Technology


CASE III

Patented SCR solution reduces C emissions

Engine Emissions Technology

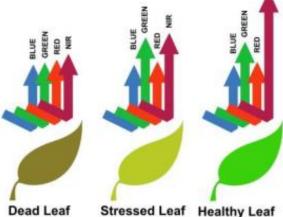
- Reduced NOx SOx emissions
- No EGR and burnout requirement
- Pure solution. No regeneration.
- Telematic monitoring: diagnostics/analytics
- No malware to detect test conditions

CVC, V2V, Autonomous vehicles

- Labor efficiencies, machine optimization
- Controlled traffic, reduced C emissions
- Scaling technology vs machine size
- Improved productivity and safety
- Reduced vehicle costs

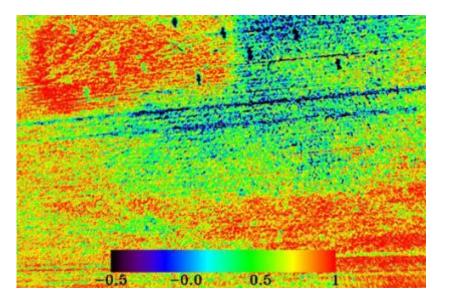
UAV-Drone Scouting; NDVI-EVI-ADVI

FAA regulations and compliance. (Normalized Difference Veg. Index)



NDVI = (NIR-VIS)/(NIR+VIS)

Crop scouting supplement


• Tool in crop interpretation

EVI = enhanced vegetation index blue instead of red λ

NIR = near infrared reflectance

VIS = red reflectance

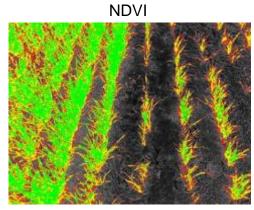


Photo credit: Agrobotix Inc.

Application Equipment Technology

Reduced rates, field loading and cost

- Droplet size independent of ground speed
- Improved weed control and efficacy
- Reduced drift, off-target
- Section control
- Nozzle-by-nozzle turn compensation

Direct Injection

- No tank pre-mixing, or rinsing
- No cross contamination
- Easier chemical changeover
- Eliminate waste and disposal issues
- Easy to add to an existing sprayer

Improved Water Conveyance

Inside field boundaries no longer require overlap of seed and fertilizer.

Water Management

- Improved waterway establishment
- Precisely defined and sculpted
- Improved waterway maintenance
- Reduce rill and gully erosion
- Limit non-point water pollution
- Reduce surface water eutrophication
- Supports multipurpse land use

Photo credit: Medina Cty. SWCD

Riparian Zones

- Stabilize field-water intersection
- Enhanced wildlife
- Restore species diversity

Photo credit: Utah St. Univ.

Conclusions:

- Soil Health working definition continues to evolve
- Soil Health Index could be improved with additional holistic parameters
- Standards for of external input levels largely absent: chemical, genetic, nutrient, other
- Unintended consequences from over-reliance on past technology
- New data management tools are coming online to assist
- Machine delivery systems with technology can potentially benefit soil health

"A thing is right when it tends to preserve the integrity, stability and beauty of the biotic community. It is wrong when it tends otherwise." – Aldo Leopold.

