



**MAKING THE RIGHT MOVES** 

DUR CHALLENGES, DUR IMAGE, DUR FUTURE



#### Alan Madison

Owner Madison Farms (Princeton, IL)



### Malcolm Stambaugh

Crop Consultant AgView FS

## Integrating Technologies on the Farm for Soil Health and Nutrient Management



Fertilizer Industry Round Table



## Integrating Technologies on the Farm for Soil Health & Nutrient Management



Malcolm Stambaugh

nutrient stewardship

## It's about accountability, and profitability

It's about Managing nutrients as a system, not an application.

It's about losing less nutrients and utilizing more.



It's about Minimizing environmental impact by Optimizing yield and Maximizing N utilization.



## NITROGEN UPTAKE IN CORN



## NITROGEN as a MANAGEMENT SYSTEM

- 50% Fall or early Spring w/N-Serve (knifed)
- > 25% Preplant broadcast
- > 25% (+/-) post-emergence





## A Tool to Estimate the Where, What and How Much of N Management





Minimize Environmental Impact Optimize Harvest Yield Maximize Input Utilization



- A tool to use with N Management Systems
- Monitor N behavior at a point in the field
- Decision aid with late-season N Mgt.
- Early detection of high residual N (cover crops?)











# Importance of a systemic approach to crop nutrient

- Are we putting back the fertility we are removing and being good stewards of the soil and helping growers keep the bins and banks full.
- Are we using the Data we have at hand to make the best farming decisions for each farm and field.

 Growers can't always control crop growing conditions, crop input pricing, or grain pricing but they can control how they invest their fertility dollars.

### Combined Removal (Corn/Soybeans) Based on II Ag Handbook

| YIELD<br>(Bu/A) | 150 |      | 200 |      | 250 |      | 300 |      |
|-----------------|-----|------|-----|------|-----|------|-----|------|
|                 | DAP | Pot. | DAP | Pot. | DAP | Pot. | DAP | Pot. |
| 50              | 237 | 178  | 283 | 202  | 330 | 225  | 378 | 248  |
| 60              | 254 | 200  | 300 | 223  | 348 | 247  | 396 | 270  |
| 70              | 274 | 222  | 320 | 245  | 367 | 268  | 414 | 292  |
| 80              | 293 | 243  | 333 | 266  | 387 | 290  | 434 | 313  |

14

## 7 "Fail-Safe" Steps for Maximizing Fertilizer Returns with Limited Resources

- 1. Soil test to determine need
- 2. Lime adequately
- 3. Grow best crop possible
- 4. Use "right" rate
- 5. Take nutrient credits
- 6. Maximize efficiency /avoid losses
- 7. Avoid unnecessary additions



## Alan Madison alan48@pcwildblue.com

Malcolm Stambaugh mstambaugh@agviewfs.com