

India's fertilizer market

Dr MP Sukumaran Nair Centre for Green Technology & Management, India

Agenda

- India's economy- an overview
- Agriculture & Food security
- Fertilizer consumption
- Domestic production & imports
- Subsidy and its impacts
- Fertilizer policy since 1978
- Evolution of Subsidies
- Fertilizer pricing policy
- Investment climate
- Impacts on the Industry
- Way forward

Indian economy

- \$ 2 trillion size to reach \$ 6 trillion by 2020
- Growth rate 8-9% pa
- Sector wise contribution
 - Agriculture 17 %Industry 28 %
 - Services 55 %
- * 65 % of workforce (467 million) depend on agriculture

Population

1210.1 million growing by
0-14 age group
15-64 age group
+65
5.3 %

Food grains production Million MT

Product	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12
Rice	83.13	91.79	93.36	96.69	99.15	100.5	102	104.32
Wheat	68.64	69.36	75.81	78.57	80.58	79	82	93.90
Cereals	185.23	195.22	203.09	216.21	219.21	203	228	240.23
Pulses	13.13	13.38	14.2	14.76	14.57	14.59	16.5	17.21
Total	198.36	208.6	217.29	230.97	233.78	217.59	241.5	257.44

Average annual growth over 5 years is 2.29%

Fertilizer Consumption (Kg/Ha)

Country	N+P+K
India	156.1
Pakistan	204.9
Bangladesh	188.3
China	396.0
Korean Republic	284.0
Egypt	375.0
Sri Lanka	122.1
Indonesia	101.0
U.S.A	114.0
World Average	107.0

Food grains demand 2020-'30

Technology Conference

Consumption rising on account of growth in income level & working age population

Increasing food production-GoI efforts

CGTM Centre for Green Technology

- National Food Security Mission
 - Outlay 1 Billion \$ for XI plan
 - Increase production of Rice-10 MMT and Wheat by 8 MMT by 2011-12
- National Agricultural Development Programme
 - Outlay 5 Billion \$ for holistic development of Agricultural sector
- Mission mode approach for
 - Horticulture
 - Cotton

Technology Conference

- Oil seeds
- Pulses
- Increase in MSP in Government procurement
- Irrigation for additional 10 MM Hectares
- Infrastructure improvements for
 - Soil testing
 - Fertilizer testing
 - Marketing
 - Food Processing

Fertilizer usage Million MT

Nutrient	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12
N	12.72	13.77	14.42	15.09	15.58	16.56	17.31
P2O5	5.2	5.54	5.51	6.51	7.27	8.05	7.66
К2О	2.41	2.43	2.64	3.31	3.63	3.51	2.66
Total	20.33	21.74	22.57	24.91	26.48	28.12	27.63
Kg/hectare	106	112	115	127	135	144	145

Fertilizer use efficiency

Year	Ferti Consur	ilizer mption	Food grain Production		
	growth MMT rate %		MMT	growth rate %	
1990-91	12.5	8.5	176.4	3.1	
2000-01	18.1	4.1	209.8	1.9	
2005-06	20.3	10.6	208.6	5.2	
2006-07	21.6	4.4	230.7	1.6	
2007-08	22.6	4.4	230.7	6.2	
2008-09	24.9	10.4	234.5	1.6	
2009-10	26.3	5.6	218.2	6.7	
2010-11	28.1	6.8	241.5	9.6	

Declining productivity of soil Imbalance in nutrient distribution

Crop response to fertilizer

Fast declining productivity !

Fertilizer Industry : Production Million MT

Product	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	25 -		
- Foundation							20 -		
Urea	20.09	20.22	10.8/	10 07	21 12	21.87	15 -		
orea	20.09	20.22	19.04	19.92	21.12	21.07	10 -		Urea DAP
DAP	4.55	4.71	4.21	3	4.25	3.54	5 -	\sim	Complex
Complex	6.77	7.31	5.83	6.86	7.61	8.77	0 -	2005-06 2006-07 2007-08 2008-09 2009-10 2010-11	

Imports million MT

Fertilizer Outlook and Technology Conference

Year	Ν	Р	К	Total	Major product imports	
2005-06	1.39	1.145	2.764	5.299	2011-'12 (million MT)	
2006-07	2.704	1.373	2.076	6.153	Urea 7.80	
2007-08	3.708	1.391	2.668	7.767		
2008-09	3.756	3.067	3.417	10.239	DAP 0.90	
2009-10	3.488	2.85	3.19	9.528	NP/NPK 4.41	
2010-11	4.57	3.739	3.896	12.205	MoP 4.00	

Urea Imports country wise Million MT

Country	2006-07	2007-08	2008-09	2009-10	2010-11
Oman	1.837	1.891	1.906	2.338	2.366
KSA	0.127	0.354	0.457	0.301	0.021
Qatar	0.342	0.467	0.420	0.299	0.000
UAE	0.122	0.235	0.151	0.000	0.047
CIS	1.439	0.736	1.407	0.991	0.292
China	0.154	2.635	0.496	0.534	2.505
Others	0.698	0.610	0.830	0.747	1.379
Total	4.719	6.928	5.667	5.210	6.610

DAP Imports country wise Million MT

Country	2006-07	2007-08	2008-09	2009-10	2010-11
USA	1.960	1.822	1.902	3.020	2430
CIS	0.471	0.088	1.238	1.246	950
Jordan	0.374	0.466	0.675	1.390	606
China	0.000	0.271	0.400	0.102	2525
Others	0.700	0.077	1.977	0.131	900
Total	2.875	2.724	6.192	5.889	7411

Fertilizer Subsidy Billion \$

Product	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11
Urea	2.386	2.636	3.539	5.124	6.777	4.001	4.30
P&K	1.143	1.466	2.288	3.763	14.522	7.767	6.70
Total	3.529	4.102	5.827	8.887	21.299	11.768	13.17

Mounting subsidy bill over the years!

Fertilizer Demand Million MT

hutlook and

Technology Conference

Nutriont	CAGR 4.5%		CAGR	2.5%	Meeting FG demand		
Nutrient	2020	2030	2020	2030	2020	2030	
Ν	23.31	36.21	19.21	24.59	20.64	23.39	
P2O5	11.65	18.11	9.61	12.29	10.32	11.69	
K2O	5.83	9.05	4.8	6.15	5.16	5.89	
Total	40.79	63.37	33.62	43.03	36.12	40.97	

* CAGR 4.5 % is based on trend in the last 5 years

** Assume a soil nutrient (N:P:K) ratio of 4:2:1

Addl urea capacity needed MMT

Year	2010-11	2011-12	2012-13	2013-14
N demand	15.85	16.31	16.76	17.22
N supply by Urea*	12.68	13.01	13.41	13.78
Urea requirement	27.56	28.28	29.25	29.96
Present prodn	21.25	21.25	21.25	21.25
Short supply	6.31	7.03	8	8.71
No plants** reqd	4	5	5.5	6

* estimated 80% by urea

** Std plant 1.5 MMTA (2500 TPD ammonia & 2X2250 TPD urea)

Addl P2O5 capacities needed million MT

Year	2010-11	2011-12	2012-13	2013-14
P2O5 demand	6.98	7.29	7.61	7.93
Present prodn	4.73*	4.80	4.80	4.80
Short supply	2.25	2.49	2.81	3.13

* 0.36 million MT expected from JV of TIFERT SA

K2O scene

- Consumption 2010-'11 (MMT)
 - MoP 3.932
 - SoP 0.0193
- No domestic resources
- Depend fully on imports

Fertilizer Subsidy System in India

- 1960s Food Shortages
- 1970s Grow more Food campaign
- 1978- Retention Pricing Scheme
- 1992- Decontrol of P&K fertilizers
- 2005- Balanced use of fertilizers
- 2007- New Pricing Scheme (NPS) for Urea
- 2008- Customized/fortified products
- 2010- Nutrient based Pricing (NBS) for P & K
 - ? NBS for Urea

Retention Pricing Scheme (RPS) 1978

- Ensure availability at affordable price
- Equitable distribution across the country
- Develop domestic capacities
- Economy –closed
- No incentives for investment in Industry
- RPS assumed 12% return on networth besides other incentives
- Spurt in investment in fertilizer industry
- Gas finds- Bombay High & S. Bassien
- Green Revolution
- RPS a boost to national agriculture

Fertilizer Industry since RPS (1980-2000)

Production increased

	1980	2000
Investment (Bn \$)	25	233
Capacity		
• N (million MT)	3.902	11.068
• P (million MT)	1.284	3.748

Fertilizer use Improved		
Kg/Ha	31	96 (now 145)

Subsidy growth

Fertilizer Subsidy 1980-2011	Bn \$	
19	080	
Indigenous	0.0642	
Imported	0.0566	
Total	1.208	
2011		
Urea Domestic	3.016	
Urea Import	1.279	
Urea Total	4.295	
P&K fertilizers	2.082	
Others	6.700	
Total	13.077	

Reasons for increased subsidy

- Fertilizer subsidy which accounts for 37% of total subsidies by the GoI increased by 560 % during the last decade (2003-'04 to 2010-'11)
- Increased consumption
- Increase in production/ import
- Rise in price of raw materials, intermediates
- Increase in cost of processing
- Increase in duties, local taxes
- Stagnant market price
- Foreign Exchange rate variations

Impact of RPS

- Increasing fiscal deficits in national budget
- Soil nutrient ratio upsets due to over use of low cost (highly subsidized) fertilizers
- Decline in farm productivity
- Environmental consequences of leaching of nutrients
- Farmer is loosing on both fronts
- Investment in industry declined
 - Subsidy release difficult
 - Other avenues for investment available

- New Pricing Scheme (NPS) III from March 2010
- Government fixes maximum retail price MRP
- Import only through Government channel
- Subsidy = (Production/Import cost Retail price)
- Plants grouped into 6 based on vintage, technology & feedstock
- Incentive for capacity utilization> 100% through retrofit/revamp

Limitations of NPS

- Wide ranging disparity among gas based and non gas based producers
- Do not recognize increased conversion costs
- No commensurate recognition for investment towards retrofit / revamp
- Irrational grouping of plants
- Inadequate provision for VAT etc
- Under-recoveries
- Result: Industry stagnated. No investments since 1995

Pre-requisites for effective NPS

- Ensure availability of natural gas
- Convert non-gas based plants to gas
- Unify pricing of natural gas through regulation
- Modify NPS to sustain production of the above plants till conversion

A difficult situation indeed!

Current situation 2011-'12

•	Pro	duction	
		Ν	+0.9%
	_	Ρ	-0.2
•	Cor	nsumption	
	_	Ν	+4.5%
	_	Р	-4.8
	_	К	-24.2
•	Imp	oorts	
	_	Urea	7.79MMT
	_	DAP	6.91
	_	NP/NPK	3.67
	_	MOD	3 08

Current situation 2011-'12

- 4.7:2.3:1
- 6.5:2.9:1
 - 146.3 kg/H 145 \$ 99/MT
 - \$ 498 \$379

Fertilizer pricing: new outlook

- Shall overcome impediments to growth of industry
- Optimize existing operations
- Stimulate investments
- Control subsidy budget
- Achieve balanced fertilizer use
- Reduce environmental burden

Shift to Nutrient based pricing (NBS)

Drivers to NBS

- Need for achieving balanced use of fertilizers
- Need to reduce subsidy pay out for fiscal management
- Introduction and promotion of innovative and efficient fertilizer products including modified fertilizers containing micro nutrients.
- Attracting fresh investments in domestic fertilizer production
- Allow market dynamics in the pricing of fertilizer products

Working of NBS for P & K

- Per unit price of P2O5 and K2O will be same in all complex fertilizers
- Fixed subsidy per MT will be decided by Govt
- Farm gate price is left open
- Manufacturers can revise selling price depending on market situation

NBS rates 2012-13

Nutrient	Rs /Kg
Ν	24
Р	21.804
К	24
S	1.677
Nutrients for fortif	ication Rs/MT
В	300
Zn	500

Price rise after NBS

• Since NBS open market price of

DAP increased by 2.5 times

Potash increased by 3.75 times

SSP doubled

May 2010	Aug 2012 (\$/MT)
DAP 199	498
MoP 101	379

Issues with NBS

- Open market price show increasing trend
- Subsidy too low and reducing
- Farmer spending on the rise
- Deficiencies of other nutrients such as calcium, magnesium, chlorine, copper, iron, manganese and molybdenum remain unaddressed
- Nationwide soil testing facilities lacking
- Over use of low cost urea (still under APM) prevail and upset soil nutrient ratio

Direct transfer of subsidy to farmers

- Scheme developed by UIDAI
- Ph-I: Creation of online database of movement of fertilizer along the supply chain to retailers
- Ph-II: Subsidy transfer to retailers and later to farmers based on AAdhaar (Unique Identification Number)
- Quantum of subsidy depends on farm size, nature of crops & ceiling on quantity & subsidy amount
- Issues: retailer working capital, storage facilities, farmers credit, delay in subsidy disbursal.
- Foolproof system to evolve.

Direct administration of subsidy

Investment climate

CGTM Sentre for Management

- Full scale NBS for all fertilizer products
- Gas availability
- Price stabilization mechanism for decontrolled products
- Revamp of closed down units- coastal locations
- Promotion of micronutrients & fortified formulations
- Incentives for coal/petcoke/vacuum residue utilization
- Streamlining disbursement of subsidy

Opportunities

- Product suppliers
 - » Large imports in N, P and K likely in the medium term
- Technology providers
 - » Cost effective & environment friendly technologies for Greenfield/brown-field plants and JVs
- Retrofits/revamp of existing plants
 - » Upgrading existing plants-process, equipment, catalysts
- Revival of closed plants
 - » Full scale utilization of infrastructure available, natural gas connectivity and allocation
- Equipment suppliers
 - » Replacement, addition etc

Way forward

- Government may increase price support to fertilizers to maintain them within the reach of farmers
- See that fertilizer consumption improves under NBS
- Establish nationwide soil analysis facility
- Educate farmers on scientific and sustainable farming practices and diligent use of mineral fertilizers
- Bring urea also under NBS

Thank You

Fertilizer Outlook and

Technology Conference

nairmps50@gmail.com mpsn@dataone.in 00 91 9447154540 www.drmpsukumarannair.com