A NEW METHOD FOR INFLUENCING PHOSPHATE AVAILABILITY TO PLANTS

The Fertilizer Industry Roundtable October 27, 2003

> By: Larry Sanders, Larry Murphy and Michael Kimmerly

A NEW METHOD FOR INFLUENCING PHOSPHATE AVAILABILITY TO PLANTS

Objective... Treat Microenvironments, Not Acres

PHOSPHORUS FERTILIZERS THE PROBLEM

- Crop recovery limited to 5 25% of applied phosphate fertilizer during the season of application. (Mortvet, 1994)
- > At high pH, P is fixed by Ca and Mg.
- > At low pH, P is fixed by Fe and Al.

PHOSPHORUS FERTILIZERS THE SOLUTION

- > Specialty Fertilizer Products has developed & patented a family of di-carboxcyclic copolymers.
- Can be used as a coating on granular phosphates or mixed into liquid phosphate fertilizers.

PHOSPHORUS FERTILIZERS THE SOLUTION

- These compounds have an extremely high exchange capacity
 approximately 1.8 eq / 100 gms.
- Polymeric structure is very specific to attracting and adsorbing multivalent cations.
- Functionality is not affected by pH, temperature ranges or ionic strength.
- > The co-polymer is biodegradable and water soluble.

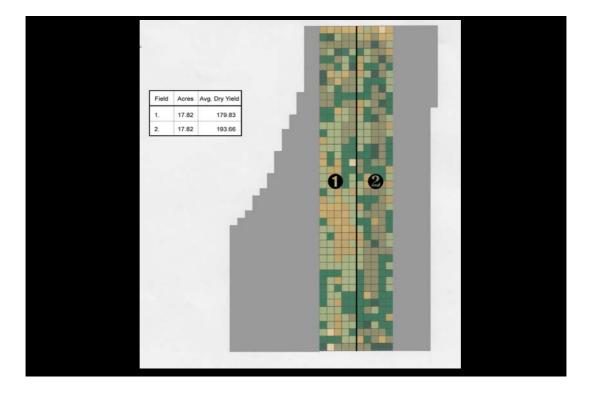
PHOSPHORUS FERTILIZERS THE SOLUTION


Mode of Action

- > The compound sequesters antagonistic cations out of solution.
- > Phosphorous is left unfixed and available to the crop.
- > Due to phosphate immobility this results in highly concentrated zones of available phosphorus for the plants.

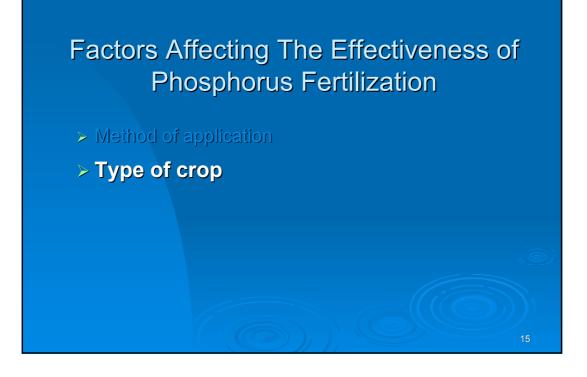
% Experimental Material ppm M	AP in Solution
0.00 Al 100 23	6.9 45.5
0.25 AI 100 29	98.4 57.4
0.50 Al 100 28	4.5 54.7
0.75 AI 100 32	.6.0 62.7
1.00 Al 100 30	9.4 58.9
0.00 Ca 100 25	61.5 48.4
0.25 Ca 100 29	5.8 56.9
0.50 Ca 100 31	4.1 60.4
0.75 Ca 100 31	0.4 59.7
1.00 Ca 100 30	98.2 59.3
0.00 Fe 100 28	9.9 55.8
0.25 Fe 100 31	6.7 60.9
0.50 Fe 100 30	3.5 58.4
0.75 Fe 100 32	9.2 63.3
1.00 Fe 100 30	58.8

Experimental material effects on MAP solubility in various solutions



Method of Fertilizer Application Winter Wheat – University of Arkansas

46.7 54.7 58.2 76.9
58.2
76.0
/0.9
65.6
55.1
68.3
7.5


Method of Fertilizer Application Liquid Fertilizer – Indiana Farmer

Treatment Applied	2001	2002	2003
		Yield Bu/A	
Am. Polyphosphate	168	180	192
Am. Polyphosphate + Exp.	176	194	204
200 lbs 10-34-0/A, row applied at	t planting, pH	= 7.6	
200 lbs 10-34-0/A, row applied at	t planting, pH	I = 7.6	
200 lbs 10-34-0/A, row applied at	t planting, pH	I = 7.6	

Phosphorous Availability Enhancement Collards – Auburn University, Alabama

Treatment Applied	Fresh Wt Ibs/plot
Control	1.4
MAP Banded	5.2
MAP Broadcast	3.9
MAP + Exp. Product, Banded	5.5
MAP + Exp. Product, Broadcast	4.7
рН 6.2	67

Phosphorous Availability Enhancement Kansas State University, University of Missouri

Treatments	Bromegrass Miami Co, KS	Bromegrass Miami Co, KS	Fescue Lawrence Co., MO	
No P	5100	3210	3096	
MAP	5290	4160	4392	
MAP + Exp.	6010	4710	4724	
	b P2O5/A, Acidip pH A, Fescue - 100 lb N/			

- Method of application
- > Type of crop
- Soil pH
 - pH levels below 5.5

Wheat Response to Enhance P Availability

Winter Wheat - Rice County, Kansas

Treatment Ap	plied	Grain Yield Bu/Acre
Control		31.6
MAP		34.2
MAP + Exper	imental Product	t 39.5
LS	D (0.10)	7.2
20 lb p2o5/A ban	ded at planting	Murphy Agro, Kansas State Univ.

- > Method of application
- Type of crop
- Soil pH
 - o pH levels below 5.5
 - pH levels between 5.5 and 7.0

Corn Response to Enhanced P Availability University of Missouri

Treatment Applied	Yield Bu/Acre	
Control	135	
MAP Banded	132	
MAP Broadcast	132	
MAP + Exp. Product, Banded	157	
MAP + Exp. Product, Broadcast	151	
LSD (.10)	13	
20 lb P2O5/A	(17)	<u>.</u>
Soil Test Bray P-1 = 10, Soil pH = 5.9		
		23

- > Method of application
- Type of crop
- Soil pH
 - » pH levels below 5.5
 - ⇒ pH levels between 5.5 and 7.0
 - pH levels above 7.0

Corn Response to Enhanced P on High pH Soil University of Minnesota - Lamberton

Treatment Applied	Dry Weight g/6 plants	P %	P Uptake mg/6 plants	Yield Bu/Acre
Control	14.5	0.306	44	108
MAP Banded	18.8	0.309	58	116
MAP + Exp. Banded	19.3	0.328	64	122
LSD (.10)	2.7	0.016	10	5

Corn Response to Enhanced P on High pH Soil University of Minnesota - Waseca

Treatment Applied	Yield Bu/Acre
Control	136
50 DAP Broadcast	155
50 DAP + Exp Broadcast	175
LSD (.10)	18
Exp Coating 0.25%	
Soil pH = 7.3, Soil test P = 7 ppr	n Olsen

Factors Affecting The Effectiveness of Phosphorus Fertilization

- > Method of application
- Type of crop
- > Soil pH
 - ⊸ pH levels below 5.5
 - pH levels between 5.5 and 7.0
 - o pH levels above 7.0

Soil Test P

Wheat Response to Enhance P on Medium P Soil Texas A&M University

30.1	
29.5	
32.4	
37.6	
37.8	
7.6	
lie	
	31
	29.5 32.4 37.6 37.8

Irrigated Corn Response to Enhanced P Kansas State University

Treatment Applied	2002	2002	2003
		Bu/A	
Control	172b	119c	169c
60 MAP	193a	173b	195b
60 MAP + Exp.	201a	194a	210a
P banded at planting			

Soil pH = 6.8, Soil P = 25-38 ppm Bray 1.

Irrigated Soybean Response to Enhanced P Kansas State University

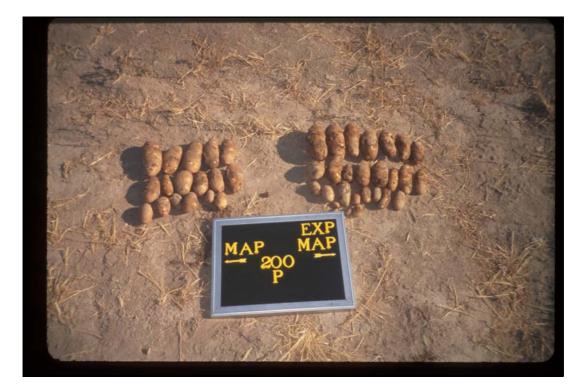
Treatment Applied	2002	2003
	Bı	ı/A
Control	51.8c	32.3c
60 MAP	62.2b	46.7b
60 MAP + Exp.	72.8a	57.5a

- > Method of application
- Type of crop
- 🗲 Soil pH
 - o pH levels below 5.5
 - pH levels between 5.5 and 7.0
 - o pH levels above 7.0
- Soil Test P
- P Application Rates

Wheat Response to Enhanced P Availability SARDI - Australia

Treatment Applied	Grain Yield kg/ha	Total DM kg/ha	Heads/M2	
MAP 4 Lbs/Acre	1689	5913	254	
Enhanced MAP 4 Lbs/Acre	1879	7140	299	
MAP 10 Lbs/Acre	1944	7024	274	
Enhanced MAP 10 Lbs/Acre	1955	8184	312	
MAP 20 Lbs/Acre	2081	7681	290	
Enhanced MAP 20 Lbs/Acre	2241	7894	309	
LSD (0.10)	132	1186	49	

P banded at seeding, soil 70% calcium carbonate



- > Method of application
- > Type of crop
- Soil pH
 - pH levels below 5.5
 - pH levels between 5.5 and 7.0
 - pH levels above 7.0
- Soil Test P
- P Application Rates
- > Improved Economics

Potato Yield & Return Responses to Enhanced P Availability University of Idaho

Treatment Applied	Yield CWT/A	Petiole P%	Gross Return
Control	311a	.225d	1456
MAP 60 lb P205/Ac	330ab	.253cd	1546
MAP 120 lb P205/Ac	344bc	.275bc	1591
MAP + Exp 60 lb P2O5/A	339ab	.288ab	1575
MAP + Exp 120 lb P2O5/A	369c	.308a	1791

Conclusions

- Influencing or controlling reactions in the microenvironment around the fertilizer granule has proven to have significant benefits to the availability of applied nutrient P.
- This in turn gives a favorable plant response.

Conclusions

- A wide spectrum of crops can be affected at normal fertilization rates.
- Significant potential to improve crop yields and farmer profits.
- Positive implications for improving environmental footprint of P fertilizer use.