

Industry

The Fertilizer Industry Round Table Tampa Bay, Florida November 7-8, 2007

> Terry L. Roberts President, IPNI

Challenges facing the fertilizer industry

Environment :


- Reactive N
- Water quality
- Air quality
- Soil quality
- Manure & point source pollution
- Greenhouse gases
- Land degradation and desertification

Production:

- Inadequate and unbalanced fertilization
- Lack of, or out-of-date fertilizer recommendations
- Farmer profitability under higher fertilizer costs
- Heavy metals in fertilizers
- Organic vs. inorganic agriculture
- Safe and nutritious food

IPNI Strategic Plan

767 Ret# 0.0.

human resources (time, labor, and money). Support investigations seeking to optimize the production of high quality food, feed,

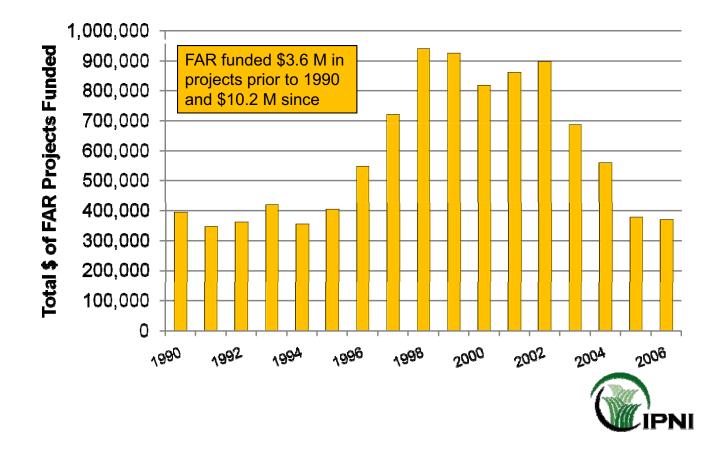
fiber, and fuel.

How do we accomplish this?

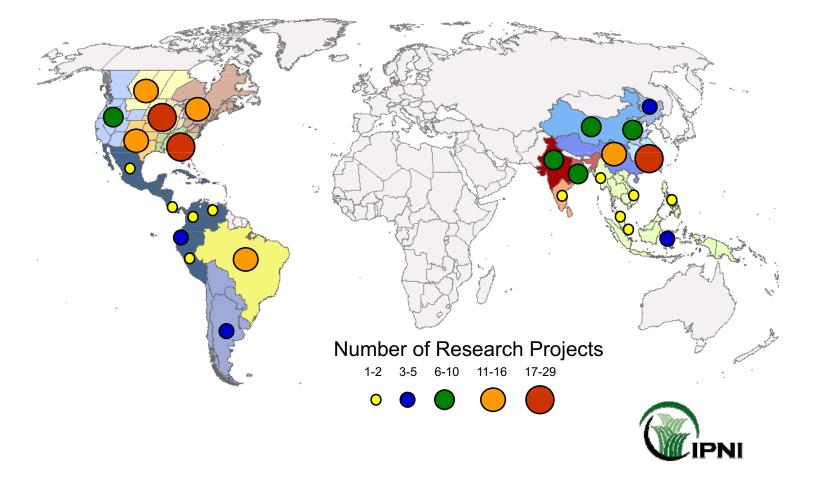
- Scientific staff
- Research foundation
- Direct research support
- Collaboration with others
- Influence other research

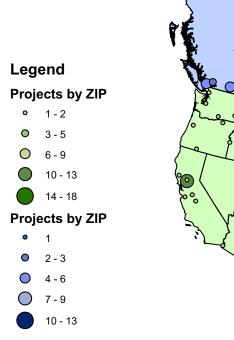
■22 Ph.D. scientists in 8 program areas

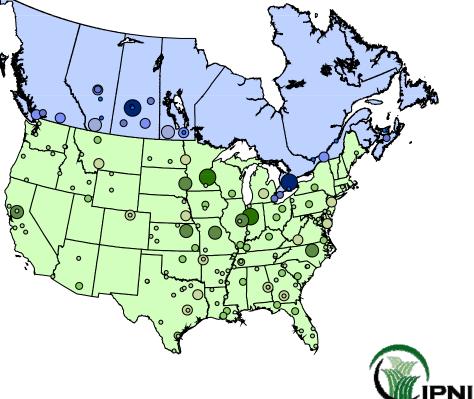
- -6 scientists in North America
- 12 scientists in International regions
- 4 in management



How do we accomplish this?

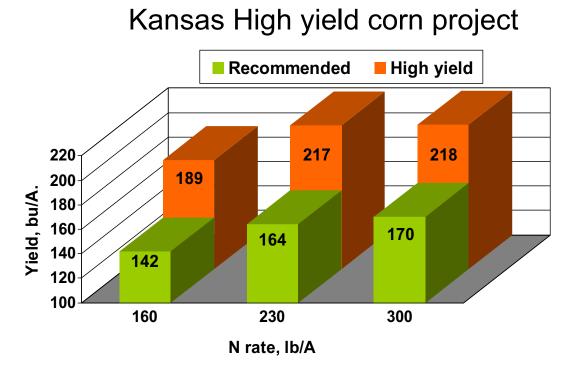

Foundation for Agronomic Research (FAR) ... sister organization to IPNI


History of Project Funding by FAR



2007 Research Projects - 219

North American Research Projects



Topic Topic Alfalfa Banana Barley			www.ipni.net
Boron Calcium Canola Carbon Sequestration Chloride Citrus Coarse Grains Copper Visit these sites for m PPI/PPIC Supported Cotton Conse Grains Copper Visit these Corn Supported Corn Supported Corn Supported Copper Conse Cons Conse Conse Conse Conse Cons	Topic Grid Sampling High Yields Iron Irrigation Legumes Magnesium Manganese Manure Management Micronutrients Maxiumum Economic Yield (I Micronutrients Microorganisms	or Topic Topic Oil Palm Oilseeds Phosphorus	Printable Version
 IFAFS P USB Pro USB Pro Education Environment Extension Fertilizer Economics Fertilizer Placement Field Variability Flax Foilar Fertilization Forages Fruits Grid Sampling 	Molybdenum Nickel Nitrogen Nutrient Deficiency Nutrient Management Nutrient Removal Nuts Oats Oil Palm Oilseeds Phosphorus Plant Analysis Plantation Crops	Plant Analysis Plantation Crops Potassium Potato Profitability Pulse Crops Recommendations Rice Sandy Soils Site-specific Management Soil Acidity and Liming Soil Management Zones Soil Testing Solutions Sorghum	e contains fundamental information on the research projects American project funded has a project number in which the a number following the letters is associated with a specific neral topic. clude short articles or tables, published papers or reports, study. ed with caution. The IPNI staff often post photos and in- n to offer an opportunity to stay abreast of projects of d. Ided as resources permit.
	Potasi Profitability Pulse Crops Recommendations	Soybeans Starter Fertilization Sugarbeet Sulfur Vege' Vate: Strong and Efficiency	

	Research	Database 🦾			
	<u>nescaren</u>	Research supported by IPNI and FAR			
PLANT NUTRITION					
esearch Database Home	Select Projects By State/P	rovince 🝸 or Country 👻 or Topic			
		Oil Palm			
ut these other wa for more		Oilseeds Phosohorus			
L/PPIC/FAR		Plant Analysis		Printable Version	
pported research)		Plantation Crops			
ARmiresearch.com	Recommendations	Potassium			
	AB-11	Fertilizer Requirement of Irrigated Potato			
TAPS Propert	AR-25F	Nitrogen Source, Timing and Rate Date Conten			
is Protect	AR-31F	Development and Implementation Recommendations	lected Major Cropping Systems		
	BOLIVIA-1	Network of fertilization experimen Rice			
	CA-19F	Potassium Nutrition of Pistachio: Sandy Soils Nutrient Management Strategies, Site-specific Management	indations and Diagnostic Procedures		
	CHONGQING-NMS05	Nuclient Management Strategies 10 114 119			
	FAR-06F	Development and Implementation Soil Management Zones	lected Major Cropping Systems		
	GA-19F	Use of Enhanced Soil Survey to C Soil Testing	cision Farming		
	GANSU-NMBF	Nutrient management and balance Solutions	nsu province		
	GANSU-NMS01 PA	Nutrient Management in the Pove Soybeans			
	GUANGXI-NMS02	Nutrient Management Strategies Starter Fertilization			
	GUATEMALA-05	Phosphorus fertilization and soil p Sugarbeet	garcane soils of Guatemala		
	HUBEI-23	Soil Nutrients Status in Root Lotu Sulfur	tus for High Yield, Quality and Efficiency		
	IA-09F	Variability in Soil Test Potassium Tillage Systems			
	IA-11F	Coordination of Management Prac Tree Crops	COMPETE): Iowa Project on Improved Soybean Nutrient Recommendations		
	ID-08F	Development and Implementation Turf Grass	lected Major Cropping Systems		
	IL-34F	Development and Implementation Vegetables	lected Major Cropping Systems		
	INDONESIA-23	Oil Palm Management Program (Of Water Stress and Efficiency Wheat			
	INNER MONGOLIA-NMI	BF Nutrient management and balance	×		
	JIANGXI-NMS21	Soil Nutrient Management Strategies for a Monitored Village	in Shanggao County, Jiangxi		
	KS-34F	Development and Implementation of Fertilizer BMP Guides for	r Six Selected Major Cropping Systems		
	MB-10	Fertility Management of Winter Wheat Grown after Alfalfa			
	MD-08F	Evaluation of Different Management Factors for Consistent 100 bu/A of No-till Wheat			
	ND-12F	Development and Implementation of Fertilizer BMP Guides for	Six Selected Major Cropping Systems		
	NINGXIA-NMBF	Nutrient management and balanced fertilization on main crops in Ningxia province			
	NWZ INDIA-69	Assessment of Phosphorus and Potassium Requirements for Maximum Economic Yield of Major Crops of Central Plain Zone of Uttar Pradesh			
	NWZ INDIA-70	Site Specific Nutrient Management in Mosambi Sweet Orange (Citrus sinensis (Osbeck)			
	NWZ INDIA-71	Balance Fertilization for Maximization of Crop Yields in Gujarat			
	NY-08F	Development and Implementation of Fertilizer BMP Guides for Six Selected Major Cropping Systems			
	ON-17	Impact of Fertilization Rates on Yield and Quality of Cabbage	and Nitrate Leaching		
	QINGHAI-NMBF	Nutrient management and balanced fertilization on main crops in Qinghai province			
	QINGHAI-NMS01 G	Preliminary Study of the Impact of Fertilization on Seeded Grasses in Qinghai			
	SD-10F	Site-specific Management Guidelines			
	SHANXI-NMS01 PA	Soil Nutrient Management Techniques and its Application in	Impoverished Areas of Shanxi		
	SICHUAN-NMS02	Effect of Balanced fertilization on Reviving Degraded Grassla			
	5K-33	Evaluation of Agronomic Practices and Quality Parameters of			
	SZ INDIA-39	Characterization of phosphorus in selected soil series of Karr			
	TIBET-03	Effect of improved fertilization on yields of watermelon and t			
	TN-17F Soil Fertility Requirements for Hybrid Bermudagrass Hay Production				
	1477 345		(COMPETE): Wisconsin Project on Improving Assessments of Soybean Nutrient Need	5	

Key research area: maximum yield research ...

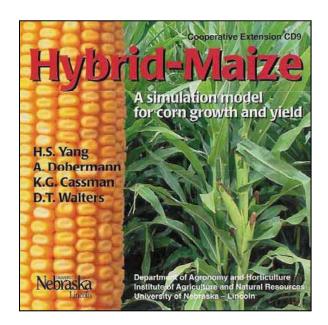
B. Gordon. Average 2000 to 2003 Average across 2 populations (28,000 and 42,000 plants/A)

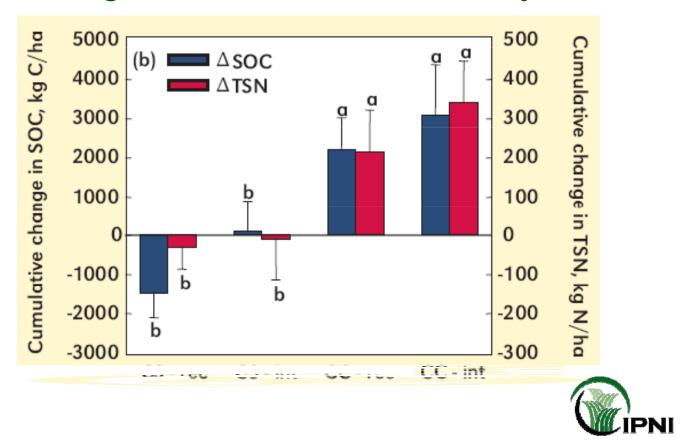
KSU recs.= 30 lb P_2O_5/A , no K or S High yield= 100 lb P_2O_5/A , 80 lb K_2O/A , 40 lb S/A

Key research area: maximum yield research ... Ecological Intensification

www.ipni.net

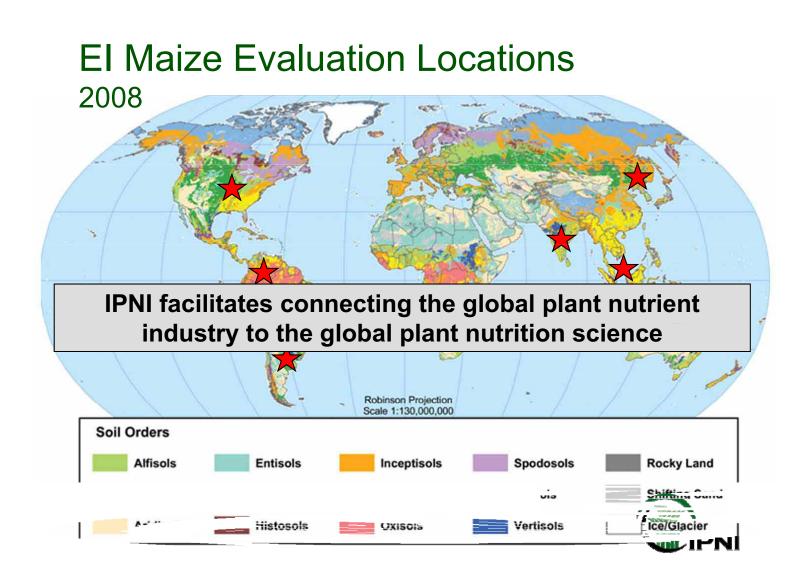
University Nebraska (UNL) Ecological Intensification study


- Initiated in 1999
- Main plots are crop rotation (CC, CS)
- Sub plots are
 - Population- recommended & 2 higher
 - Nutrients recommended & enhanced
- Have achieved corn yields of >280 bu/A
- An important product is Hybrid-Maize


Hybrid-Maize simulation software

- A user friendly program
- Provides a mechanistic approach to determining yield potential
 - Analyzes impacts of several factors (climate, planting date, row spacing, and hybrid)
- Analyzes site yield potential, simulates growth, forecasts yield in-season

UNL EI project Change in soil C and N after 4 years

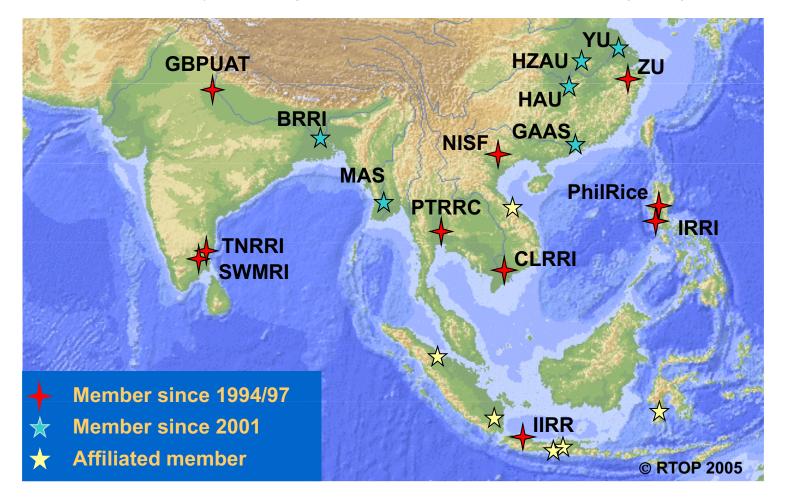

Estimated net global warming potential (GWP) for maize in Nebraska, U.S.

		Continuous corn (CC)		Corn-soybean (CS)	
GWP components		Recomm.	Intensive	Recomm.	Intensive
		kg CO ₂ -C equivalents/ha/yr			
Agricultural	N fertilizer	220	330	80	180
Production ¹	P, K, fertilizer	0	60	0	60
	Lime	60	90	60	90
	Seed, pesticides	50	60	50	60
	Machinery, transport	20	30	20	30
	Diesel	90	90	80	80
	Irrigation	140	140	110	110
	Grain drying	110	120	90	100
	Total	690	920	490	710
Δ Soil C 2		-440	-620	300	-20
Soil N ₂ O ³		320	570	250	340
Soil CH ₄ ³		-30	-30	-20	-10
GWP ⁴		540	840	1,020	1,020
Systems: verified production and constrained and one soybean crop (2005).					

Expansion of Ecological Intensification studies in 2008

- Title: Towards a Global Approach for Nutrient Management in Maize
 - U. of Nebraska/IRRI: Dobermann et al.
- Objectives:
 - Add a nutrient management module to the Hybrid-Maize software and evaluate it globally.
- IPNI involvement:
 - Funding, Staff input on nutrient model development, and coordination of global field evaluation of model

Key research area ... Site Specific Nutrient Management (SSNM)


- SSNM ... different definitions
 - precision farming ... varying inputs within field
 - decision making for whole small fields

Irrigated Rice Research Consortium (IRRC) ... SSNM for Rice

Collaborative effort funded by SDC, IFA, IPI, and IPNI and administered by the Irrigated Rice Research Institute (IRRI)

By-products of the IRRC: http://www.irri.org/irrc/ssnmrice/

IRRI

International Rice Reasearch Institute

Home Presenting improved management for rice Developing a new approach Widespread benefits Producing healthy rice

A better match

SSNM provides specific manage potassium, and c optimize supply nutrients.

The guidelines e well-matched to growing conditic effective use by nutrients supplie materials, and ir

IRRI

International Rice Reasearch Institute


Home Presenting improved management for rice Developing a new approach Widespread benefits Producing healthy rice

Tools for farmers

Among the tools developed for farmers is the leaf color chart (LCC) used to estimate leaf nitrogen content. The LCC is a plastic ruler-shaped strip containing four or more panels ranging in color from yellowish green to dark green.

Farmers adjust their rates and timing of nitrogen fertilizer based on the color of rice leaves. Dark green leaves indicate little or no immediate need for nitrogen. Yellowish green leaves indicate a relatively higher and urgent need of the crop for nitrogen fertilizer.

Determining the need for nitrogen fertilizer using the LCC Image: International Rice Research Institute

SSNM for Maize

Site-specific nutrient management in maize

Indonesia IAARD, ICFORD, AIAT, SEAP, UN

Vietnam NISF, WASI, IAS, Cantho University,

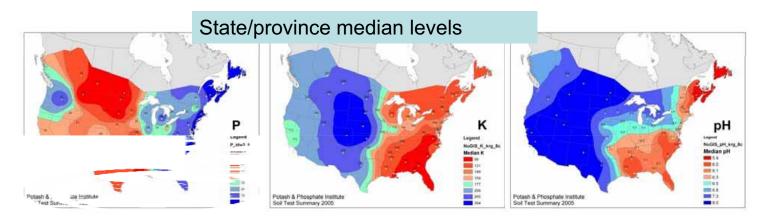
Philippines

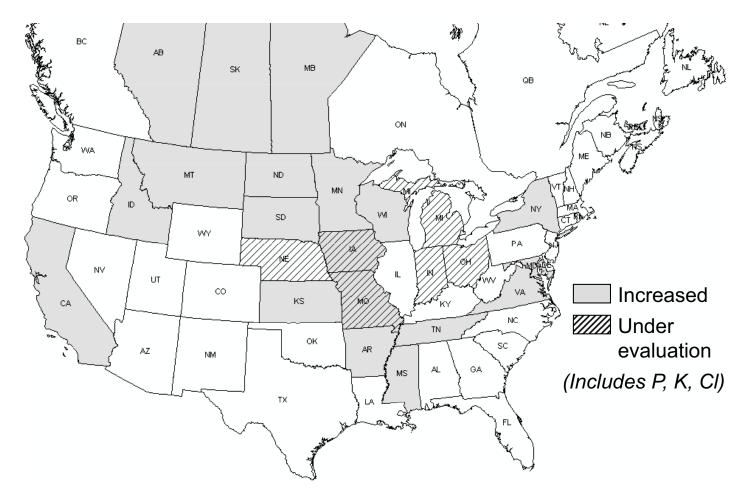
CLRRI, SEAP

UPLB Corn RDE network, PhilRice, DA, SEAP

+ 2004-2007
 ★ 2005-2007
 ★ 2005-2007

Leaf Color Chart from rice being adapted to corn





Key Research area ... soil testing and fertilizer recommendations

Soil test summaries:

- Most intensive effort currently in North America, where surveys are conducted every 4 years
- Most recent for the 2005 crop year
 - 3.4 million soil samples and involved 70 labs

IPNI/FAR research affects P/K recommendations

Recent soil test calibration data: Iowa State Univ.

Recommendation Changes in Iowa

Soil test	% of IA soils*	
category	Old	New
Very low	3	12
Low	9	24
Optimum (Medium)	24 36	24 60
High	24	13
Very high	40	27

Number in red is % medium or below.

Mallarino et al., 2002

K recommended or used in Iowa (1000 tons K_2O) Old recs 260 2001-2 use 440

 New recs
 572 (30% incr)

 2004 use
 606 (39% incr)

- Recommendations doubled because of new calibration
- Farmers responded to the change

Trends in N Recommendations ... Decoupling of rate recommendations and crop yield

IOWA STATE UNIVERSIT Agronomy Extension	ГҮ		lowa State University ISU College of Agriculture ISU Agronomy Department ISU Agronomy Du Extension
		Home Mission News	Calendar Tools Personnel Links Committees Contact
	Corn Nitrog	en Rate Calculator	
		urn <u>To N</u> and Most Profitable N pproach to Nitrogen Rate Guideline	
and corn price used follows a	es and to find profitable N rate	e economic return to N application with differe s directly from recent N rate research data. Th proach for determining corn N rate guidelines	ne method
Regional Corr	n N Rate Publication		
	Single Price Ratio Multiple Price Ratio	V. 1.20d	
	Choose state	Choose rotation pattern(s)	
	Iowa Illinois - North Illinois - Central Illinois - South Minnesota	 Corn following soybean Corn following corn 	
	Wisconsin – VH/HYP Soils Wisconsin – M/LYP Soils Wisconsin – Irr. Sands	☐ Include non-responsive sites	
	Set c	orn and nitrogen prices	
	Anhydrous Ammonia (8)	()	
	Nitro	ogen price 0.22 (\$/lb N)	
		Hore Inf	

SSNM ... Indian Approach

- Developing SSNM fertilizer prescriptions for Maximum Economic Yield (MEY) of crops based on:
 - Soil testing to establish background nutrient levels available for the crop
 - Nutrient removal using a realistic target yield
 - Balanced and adequate fertilization for a target yield

SSNM helped maximizing productivity of Rice and Wheat under RWCS (t/ha)

Site	FP	SR	SSNM	SSNM % Increase over FP	SSNM % increase over SR
Ludhiana	15.86	15.95	16.96	6.94	6.33
Modipuram	11.80	11.99	16.46	39.49	37.28
Kanpur	10.98	13.24	14.35	30.69	8.38
Sabour	9.37	11.40	14.18	51.33	24.39
SR= State recommendation, FP= Farmers practice					


IPNI research has changed official fertilizer recommendations in 6 states

Revision of Fertilizer Recommendations

Uttar Pradesh, Uttaranchal, Rajasthan, Jharkhand, Tamii Nadu ...

- This represents an additional potential consumption of 0.82 M t
 N, 0.84 M t of P₂O₅ and 0.89 M t of K₂O.
 - currently working with officials in the States of Maharashtra, Kerala, Uttaranchal, Haryana, Himachal Pradesh and Assam to revise recommendations.

Other key research areas

- Fertilizer best management practices
- Nutrient and Asian Rust interactions
- Basic research in P and K

BMP Project NRCS Conservation Innovation Grant

Irrigated corn

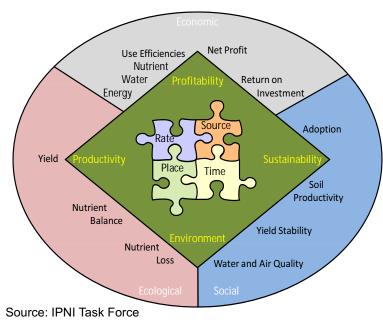
Spring wheat / pulse

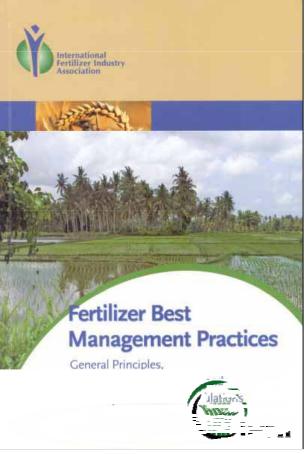
Cotton

Forages for Dairy

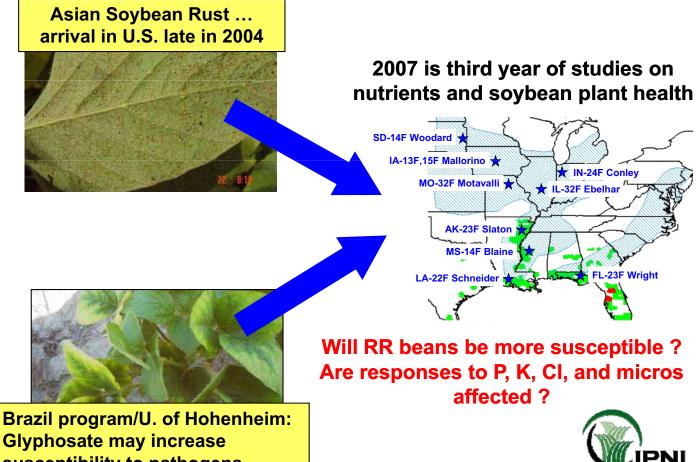
PNI

Corn/soybeans


- BMPs for <u>Fertilizer</u> Management
- 2005--3yr project funded @ \$482,000
- 6 cropping systems in 6 states
- Lead by IPNI Regional Directors
 - Developed straw-man BMP Guides for each system


Potato

- Stakeholder teams in each region
- Train-the-trainer sessions for NRCS, Extension, CCAs, etc.
- Developments featured in InfoAg 2007
- On-line delivery of BMP Guides and training materials (2008)


BMP research supports global efforts of IFA to define a strategy for adoptions of FBMPs

 Global framework for fertilizer BMPs

Nutrients and plant health (U.S. and Brazil)

susceptibility to pathogens

P and K Fellowship Programs

K Fellowship

Purdue University <u>Supporters</u>: Mosaic; PotashCorp

P Fellowship

Kansas State University <u>Supporters</u>: Agrium, Mosaic, PotashCorp, S implot

- Provide long-term (10 yr) significant support to selected universities
 - Establish "centers of excellence for P and K research"
- Objective to train graduate students in the:
 - Beneficial role of P and K in food production
 - Realities of the farm and the fertilizer industry
- IPNI Role convener the meetings re: project direction

Challenges facing the fertilizer industry

- The industry needs to be able to defend and justify the use of fertilizer nutrients.
- Environmental concerns and agronomic problems are of major concern of the global fertilizer industry ...it is difficult to separate environmental from agronomic issues

Challenges facing the fertilizer industry

If we cannot show through scientific means that fertilizer nutrients are needed, how to use them properly, and how to use them more efficiently, the industry will never be able to defeat unfounded environmental accusations and protect nutrient use from inappropriate regulations.

IPNI Research Supports the Worl dwide Fertil izer Industry

www.ipni.net