Controlled-release fertilizers for Florida citrus production

Thomas Obreza

Soil & Water Science Dept.

Topics

- Overview of Florida's citrus industry.
- Environmental issues.
- General citrus nutrient management.
- Nitrogen sources and fertilizer programs – traditional and innovative.

1. Citrus industry overview

Florida's commercial citrus

2004 statistics

- □ 748,555 acres.
- □ 97,945,000 trees.
- □ 12.6 million tons of fruit.
- □ Crop value \$746 million.
- □ 73% of US production.
- □ 18% of world production.

Future of the citrus industry?

700 new residents arrive in Florida each day

Elevation

Soils

Florida citrus soils

2. Environmental issues

Ridge

Flatwoods

Shallow (<100 ft) drinking water well survey, circa 1990

Deep sand + Citrus N fertilization = ???

3. Citrus nutrient management

Fertilizer use in Florida, 2002-03

Nutrient	Tons	% of North American consumption
Ν	194,363	1.5
P_2O_5	8,792	0.2
K ₂ O	43,867	0.9

Relative importance of nutritional factors affecting yield of <u>mature</u> Florida citrus trees.

N citrus fertilization BMPs

Source

🗖 Rate

Frequency and timing

Application method

Irrigation management

N rate BMP for bearing trees (>7 years old)

NITROGEN	<u>lbs N/acre</u>
Max. yearly N rate	240
Max. single dry app., dry season	65
Max. single dry app., wet season	40
Max. single fertigation, dry season	15
Max. single fertigation, wet season	10
POTASSIUM	

Apply K_2O at 100 to 125% of the N rate

4. N sources and fertilization programs

Solution fertilizer

Typical and non-typical N sources

Why would a citrus grove manager be interested in CRF?

- Preference for dry fertilizer.
- □ Increased N fertilizer efficiency.
- Lower application frequency.
- Lots of re-plants to manage.
- Environmental advantage (potential cost-sharing BMP).

Why would a citrus grove manager be wary of CRF?

Per-ton cost.

Lack of faith about performance.

Body of research is small.

Fertilizing a Florida citrus grove only once per year is unheard of.

Experiments with CRFs

Experiment 1 – 1989 to 1996

Treatment	No. of applications in 7 years	N rate range
100% Ammonium nitrate	31	
50% Ammonium nitrate 50% IBDU	16	0 to 280 Ibs/acre/yr
60% Ammonium nitrate 40% <mark>Methylene urea</mark>	14	

Experiment 2 – 1991 to 1996

Treatment (Trade name and analysis)	No. of applications in 6 years	N rate range
Conventional (8-4-8)	24	
Prokote Plus (20-3-10)	6	
Nutricote 360 (17-6-8)	6	0 to 160
Sierra (16-6-10)	6	lbs/ac/yr
Meister (17-6-12)	6	
Escote (19-6-12)	6	

Coated vs. soluble fertilizer

Economic analysis

Fertilizer	6-yr fert cost (\$/tree)	Cumulative Ibs sol/tree	Gross return (\$/tree)
Prokote	15.49	27.7	28.90
Sierra	19.20	27.0	28.25
Nutricote	19.85	26.5	27.47
Meister	15.81	25.8	26.41
Escote	14.90	24.9	25.98
Conventional	5.06	24.2	25.40
None	0.00	10.8	11.23

Experiment 3 – 1996 to 2000 (supported by The Scotts Company)

Fertilizer	Analysis	(lbs N/ac/yr)	App./yr
No nitrogen	0-5-16	0	3
Water-soluble N	16-5-16	45	3
	16-5-16	90	3
	16-5-16	180	3
Scotts AGROCOTE [®]	16-5-16	45	1
(Resin-coated)	16-5-16	90	1
Scotts AGROCOTE [®] (Poly-S-coated)	16-5-16	45	1
	16-5-16	90	1
	16-5-16	90	2
AGROCOTE [®] 50/50 combo	16-5-16	90	1

Current research

What is Citriblen?

- AGROCOTE[®] poly-S coated and resin-coated technologies;
- Blended with local non-coated N-P-K and micronutrient sources;
- Marketed for young and mature citrus trees.

Field trials with commercial growers

•Yield •Fruit and juice quality •Leaf tissue nutrients •Economics

Nitrogen release rate field study

Nitrogen release rate lab study

Summary

- □ Florida's citrus industry will remain strong.
- Citrus growers are always looking for ways to improve production efficiency.
- Environmental issues are driving the way nutrients (N and P) are managed.
- Florida soils hold water and nutrients poorly.
- N and K are the top two mineral nutrients affecting citrus yield and quality.
- □ The way citrus groves are fertilized is changing.
- Modern CRFs are both horticulturally and environmentally effective.

Summary

Florida soils

+ Climate

+ Citrus nutrient demand

+ Environmental issues

 Need for more efficient nutrient management.

 Greater potential market for economical CRF programs.

