STARTER FERTILIZER COMPOSITION AND METHODS OF APPLICATION FOR REDUCED TILLAGE CORN

Dr. Barney Gordon
Kansas State University
Dr. Larry Murphy
Fluid Fertilizer Foundation

THIS PRESENTATION:

EMPHASIS ON USE OF FLUID STARTERS

IN HIGH RESIDUE SYSTEMS,
USE OF STARTER SHOULD
BE A MANAGEMENT
DECISION, UP FRONT,
REGARDLESS OF SOIL
TEST VALUES

STARTERS WHERE TO PUT THEM?

MANY FACTORS INFLUENCE CROP RESPONSES TO STARTERS BESIDES SOIL TEST VALUES

Large amounts of residues

Cold soils

Compaction

Genetics

MICROENVIRONMENTAL CONDITIONS HAVE SUBSTANTIAL EFFECTS ON NUTRIENT AVAILABILITY

MODIFICATION OF MICROENVIRONMENTS CAN ENHANCE NUTRIENT USE EFFICIENCY

THE MICROENVIRONMENT OF N-P BANDS

WE'VE UNDERSTOOD THE VALUE OF PREPLANT BANDING OF N AND P FOR 30 YEARS

N Stimulation of P Absorption by Plants

- Decrease in the rhizosphere pH and increased solubility of soil phosphates.
- Increased root length.
- Increased physiological capacity of the root to adsorb P. N treatment of corn roots resulted in higher P uptake than a 10-fold increase in P concentration.

(Kamprath, 1987)

SOME THINGS WE HAVE LEARNED ABOUT STARTERS IN KANSAS

STARTERS NEED TO BE MORE THAN JUST 10-34-0

HIGH N STARTERS

Starter Effects on Corn Yield (bu/a) 3-year avg

Starter	In-	2x2	Dribble	Row Band
	furrow			
5-15-5	172	194	190	179
15-15-5	177	197	198	180
30-15-5	174	216	212	192
45-15-5	171	215	213	195
60-15-5	163	214	213	201
Average	171	207	205	189

HIGH CONCENTRATIONS OF AMMONIUM N MAY INCREASE SOIL P MOVEMENT

LIMITATIONS TO USE OF HIGH N STARTERS

- Do not place in direct seed contact. Urea in added N will cause germination damage
- Do not place high N starters directly over the row on coarse textured soils. Urea may move into the seed zone

LIMITATIONS ON SURFACE APPLICATIONS OF STARTERS

- **Limited surface moisture**
- Positional unavailability of nutrients
- How mobile are metals like Zn?

RESEARCH SHOWS FLEXIBILITY IN STARTER PLACEMENT

Conclusions

- Dribble applied starter fertilizer as effective as 2x2. In-furrow applied starter reduced plant populations and yields.
- Higher N analysis starters maximized grain yields.
- **Similar results in other states**
- Seeding equipment can be easily modified for fluid starters at low cost

THE IMPORTANCE OF K IN STARTERS...EVEN ON HIGH K SOILS

MORE K STRESS IN REDUCED TILLAGE SYSTEMS

MORE K NEEDED WITH:

- DROUTH STRESS
- EXCESS MOISTURE
- LOWER TEMPERATURE
- SOIL COMPACTION
- REDUCED TILLAGE

Nutrient Demand of a 225 bu/a Com Crop and Nutrient Supply from the Soil

	Estimates on Amounts (lb/a) Supplied by				
Nutrient	Demand (lb/a)	Interception	Mass Flow	Diffusion	
K	250	6	34	210	
N	254	3	206	45	
Р	60	2	3	55	
S	30	2	28	0	

NEED FOR SUPPLEMENTAL POTASSIUM IS NOT ALWAYS PREDICTABLE BY SOIL TEST

2x2 Applied Starter, Scandia(2-year avg)

Starter, lb/acre		Yield,	V-6 K	
N	P205	K	bu/acre	%
15	30	0	175	3.41
30	15	0	185	3.38
30	30	0	184	3.42
30	30	5	198	4.88

SOIL TESTS INCREASE THE PROBABILITY OF BEING RIGHT, BUT ARE NOT THE LAST WORD

ADDITION OF NEW CHEMISTRY TO STARTERS: Dicarboxylic co-polymers

A VAIL

A POLYMER FOR SOLID AND FLUID P FERTILIZERS TO INCREASE PHOSPHORUS USE EFFICIENCY AND INCREASE PROFITS

AVAIL Polymer Chain

AVAIL CHARACTERISTICS

- An extremely high cation exchange capacity approximately 1800 milliequivalents /100 gms.
- Polymeric structure is very specific to attracting and adsorbing multivalent cations..Al, Fe, Ca, Mg
- Functionality is not affected by pH, temperature ranges or ionic strength.
- Biodegradable and water soluble.

AVAIL:

MODIFICATION OF MICROENVIRONMENS RELATIVE TO P AVAILABILITY

- * Enhanced P Availability

 * Increased P Concentration
 - in Soil Solution
- *Increased P Use Efficiency

UNIVERSITY OF WISCONSIN Evaluation of P Concentration in Soil Solution

Results: "At 1" below seed piece on June 18th(1st flower), July 2nd, and July 16th at Hancock, solution concentrations from MAP+Avail were significantly greater than MAP and control. No difference between treatments at 6". "

Dr. Carrie Laboski & Matt Repking Hancock & Antigo Potato Field Days Dep. of Soil Science July 18 and 19, 2007 Univ. of Wisconsin-Madison

Barney Gordon, KSU

EFFECTIVENESS OF FALL VERSUS SPRING APPLICATIONS

FALL-SPRING P APPLICATIONS—2 YEARS

Material	Timing	Yield, bu/acre
Check		178
MAP	Fall	202
	Spring	204
MAP+Avail	Fall	216
	Spring	217

^{*}Average over rates of 30, 60, and 90 lb/a P2O5.

Gordon, KSU

^{**}Bray-1 P=14 ppm

AVAIL STUDIES WITH FLUID STARTERS

ENHANCING P AVAILABILITY IN FLUID STARTER - 2002

Treatments				Corn Yield
N	P ₂ O ₅	K ₂ O		
	lb/A			bu/A
No starter				133 a
15	15	5	No Avail	152 c
15	15	5	1% Avail	167 b
15	15	5	2% Avail	186 a
Soil _J	$\mathbf{pH} = 6.8.$	Soil tes	st P - high.	Gordon, Kansas State
U.				

AVAIL EFFECTS IN FLUID STARTER-2004

Treatment	V-6 P Uptake	Yield	
	lb/A	buA	
No starter	1.5 c	223 c	
30+30+5	1.9 b	246 b	
30+30+5 + 2%	Avail 2.4 a	260 a	
Bray 1 P=22 p	pm pH=6.2	Gordon, KSU	

SUMMARY

- Avail polymer has been and continues to be effective
- Kansas results agree with studies in other states
- Delayed P fixation reactions improve P use efficiency
- Soil chemistry effect, not crop specific
- Cost effective
- Large scale use underway