

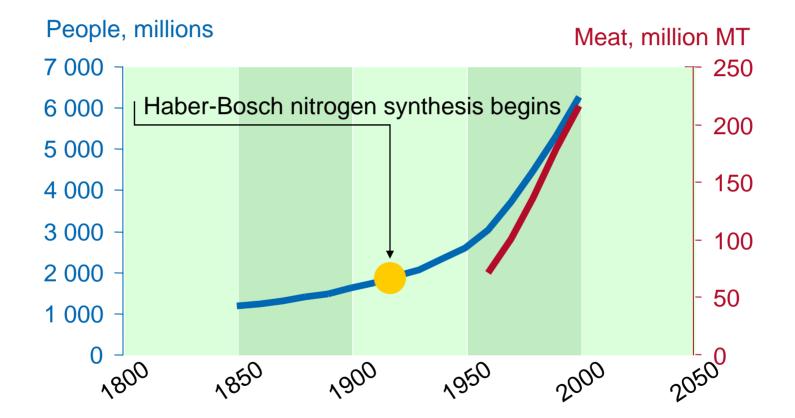
### 54<sup>th</sup> FIRT Annual Meeting

Annapolis, MD, 27-28 October 2004

### Latest Developments Regarding Fertilizers and the Nitrogen Cycle: Implications for the Fertilizer Industry

#### L.M. Maene, Director General International Fertilizer Industry Association

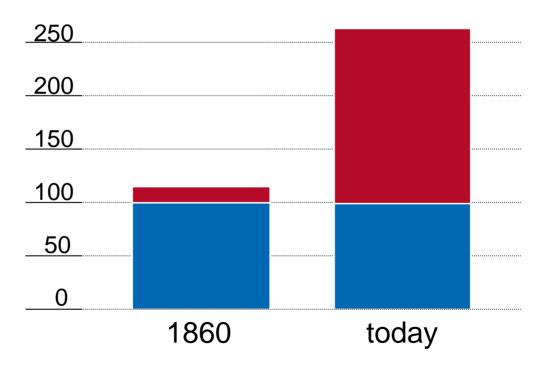







Environment Human health impacts



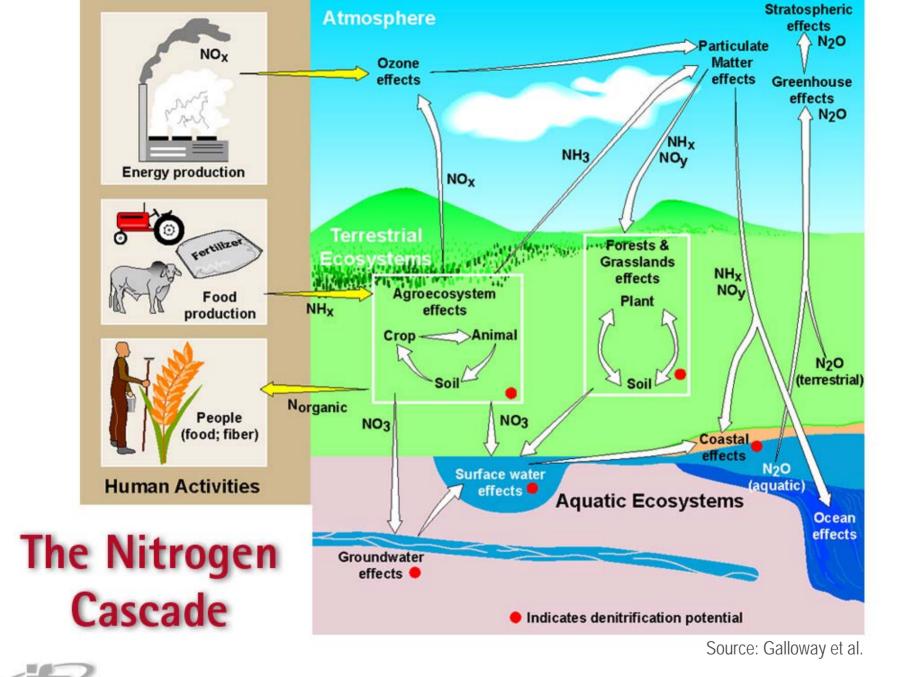

### **People and animals**

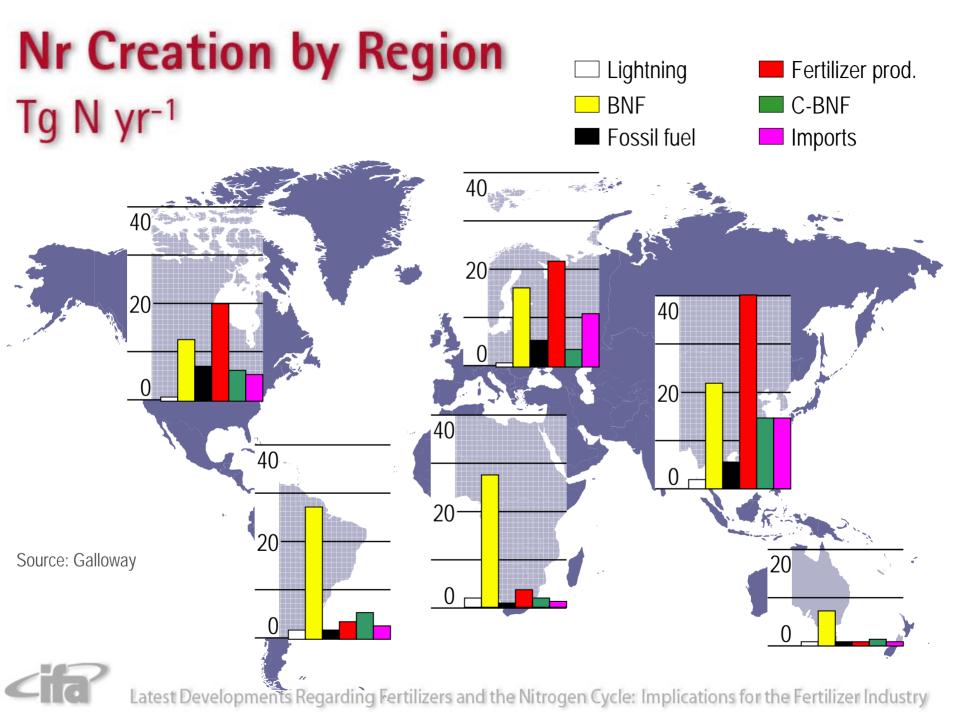


Source: Davidson

### Human fixation outstrips natural processes

300 Nitrogen fixation in million tonnes

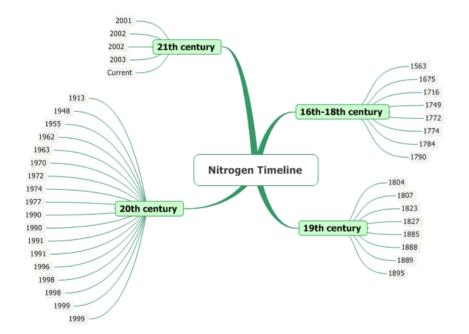



Source: INI

Human activities

Natural processes





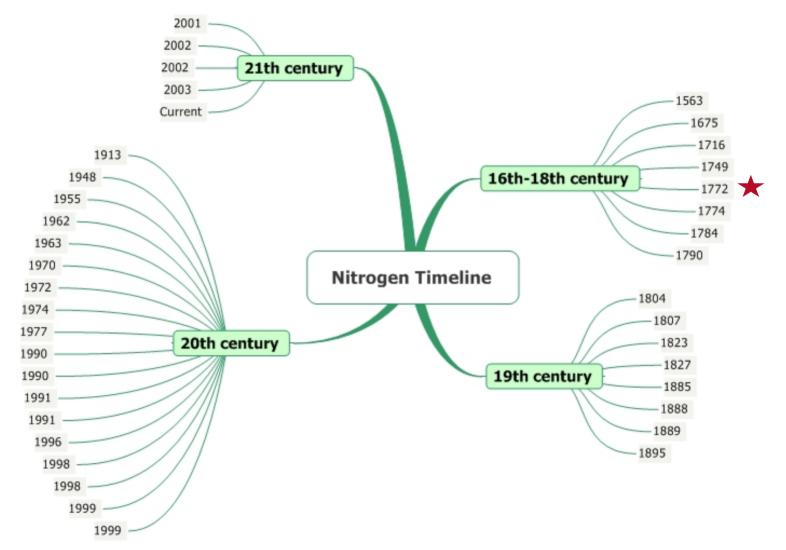



### **The Nitrogen Timeline**

#### www.iniforum.com/fileadmin/timeline



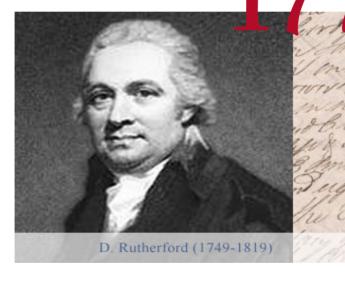
The Nitrogen Timeline provides a brief overview of the history of nitrogen and the policies that have resulted due to the impacts of nitrogen pollution.


General information about nitrogen and the discovery of the major nitrogen processes along with anthropogenic alterations and impacts to the nitrogen cycle are included.

Please send your suggestions for improvements and your additions, preferably with references and/or pictures to Jan Willem Erisman:

#### ntimeline@iniforum.org




### **The Nitrogen Timeline**



**<ifa** 



### **The Nitrogen Timeline**



Daniel Rutherford discovers nitrogen and publishes his findings in *Azote: Air Without Life*.

**<ifa** 



### The Three INI Phases

Phase I Assessment of Knowledge

What are the controls on N fluxes in the environment?

How have N fluxes changed due to human action?

What are the consequences?

What are the gaps in knowledge?

How do the answers to these questions vary by region?

Phase II Identification of Solutions

What research is needed to fill identified gaps?

Which solutions can be used to solve identified problems?

Which tools are required?

Which areas of expertise are required?

How do the answers to these questions vary by region?

Phase III Implementation of Solutions

Which solution is best for a specific problem?

What are the barriers to solution implementation?

Are there economic issues?

How long will the solutions be effective?

How do the answers to these questions vary by region?

Source: Galloway





### International Nitrogen Initiative Cross-Cutting Themes

**Biological N fixation** 

Fertilizer\*

Energy production/use

Nr distribution

Animal production\*

Human waste

**Denitrification\*** 

Nr management

Nitrogen policies\*

Oceans

Human wellbeing

\* Indicates that a workshop has occurred or is planned





### **INI Planned Activities**

#### Industrial Animal Production Systems Workshops Stanford University, November and March Hal Mooney, chair

#### Decision-makers Workshop

September 2005 Kilaparti Ramakrishna, chair



### **INI Activities to date**

## Nitrogen Fertilizer Rapid Assessment Project (NFRAP) Workshop

Kampala, Uganda; January 16-20

Mosier et al. 2004. Agriculture and the Nitrogen Cycle: Assessing the Impacts of Fertilizer Use on Food Production and the Environment. Island Press.

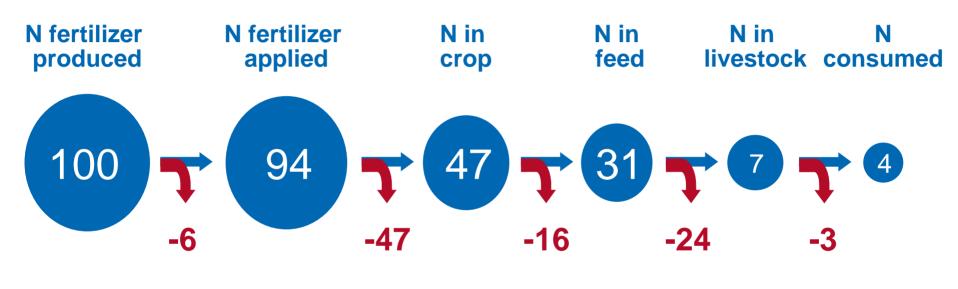
#### → Denitrification Workshop

Woods Hole, MA, USA; May 3-5 Papers to be submitted to <u>Ecological</u> <u>Applications</u>

#### Inter-American Nitrogen Network Workshop

University of Puerto Rico, Puerto Rico

Papers to be submitted to Biogeochemistry


#### → 3<sup>rd</sup> International N Conference

Nanjing, China; October 12-16 Zhaoliang Zhu (China) and Katsuyake Minami (Japan), co-chairs

#### ➔ Preliminary Assessment

Draft presented at 3<sup>rd</sup> International Nitrogen Conference

### The fate of Haber-Bosch Nitrogen



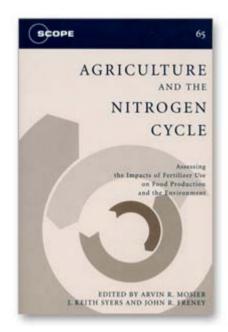
4% of the N produced in the Haber-Bosch process and used for animal production enters the human mouth

Source: Galloway and Cowling



### **N** fertilizer RAP priorities

The fate of N fertilizer added to different farming systems in diverse environments


- Provide the additional systems in the add
- 3 Technological and management strategies for enhanced N fertilizer use efficiency

### **NFRAP outcomes**

Pathways, related impacts and appropriate responses

Regionally adapted societal responses

 → Enhanced efficiency fertilizers and better management
→ NFUE



**<ifa** 

### **NFRAP recommends**

#### ➔ Support fertilizer use where soil degradation exists

- Industry to advocate framework
- Mini-packs
- ➔ Increase NFUE where loss is excessive
  - Education on enhanced efficiency products, IPNM, balanced fertilization and SSNM
  - BAPs and supporting tools
  - Reduce price differential for enhanced efficiency fertilizers

### 3<sup>rd</sup> International N Conference

#### Nanjing Declaration

#### ...

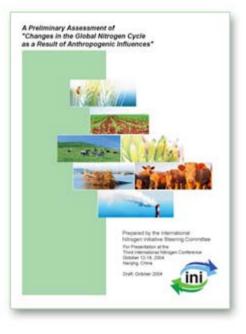
Preliminary Assessment circulated

Better knowledge of interaction between environmental and economic considerations





### **Nanjing Declaration**


- ••• Further assessment of the N cycle
- ••• More effective and efficient agriculture
- Increased information and technology exchanges
- ••• Ensure adequate nitrogen supplies locally
- Develop best management practices
- ••• Use emissions-reducing technologies





### **Preliminary Assessment**

- •••• "Changes in the Global Nitrogen Cycle as a Result of Anthropogenic Influences"
- Preliminary Assessment circulated
- ••• IFA can provide copies
- --- Comments to ini@iniforum.org





# Economic cascade

|                                       |                                         | \$/ton<br>atmospheric<br>emissions | \$/ton terrestrial<br>emissions | \$/ton freshwater<br>emissions |
|---------------------------------------|-----------------------------------------|------------------------------------|---------------------------------|--------------------------------|
| Atmosphere                            |                                         |                                    |                                 |                                |
|                                       | Climate change                          | +                                  |                                 |                                |
|                                       | Ozone depletion                         | +                                  |                                 |                                |
|                                       | PM: Visibility                          | \$290                              |                                 |                                |
| Ferrestrial                           |                                         |                                    |                                 |                                |
|                                       | Acid: Agriculture                       | \$0                                |                                 |                                |
|                                       | O3: Agriculture                         | \$1,100                            | i i i                           |                                |
|                                       | Ecosystem services<br>(agriculture)     | +                                  |                                 |                                |
|                                       | Acid: Materials damage                  | +                                  |                                 |                                |
|                                       | PM: Household soiling                   | \$40                               |                                 |                                |
|                                       | PM: Human health                        | \$7,800                            |                                 |                                |
|                                       | O <sub>3</sub> : Human health           | \$4,300                            |                                 |                                |
|                                       | Ecosystem services<br>(urban/mixed)     | +                                  |                                 |                                |
|                                       | Acid: Commercial forests                | \$0                                |                                 |                                |
|                                       | O3: Commercial forests                  | \$660                              |                                 |                                |
|                                       | Ecosystem services (forests)            | +                                  |                                 |                                |
| 4                                     | Fertilization:<br>Agriculture           | _                                  | -                               |                                |
| reshwater                             |                                         |                                    |                                 |                                |
|                                       | Acid: Recreation                        | +                                  | +                               | +                              |
| i i i i i i i i i i i i i i i i i i i | NO <sub>3</sub> :: Recreation           | +                                  | +                               | +                              |
|                                       | Ecosystem services                      | +                                  | +                               | +                              |
| Зау                                   |                                         |                                    |                                 |                                |
|                                       | NO₃ <sup>-</sup> : Commercial fisheries | +                                  | +                               | +                              |
|                                       | NO₃ <sup>-</sup> : Recreation           | \$500                              | \$1,200                         | \$7,300                        |
|                                       | Ecosystem services                      | +                                  | +                               | +                              |

Cinculture de Constant des fauthes Observations also Des

Source: Moomaw, 2004



### Summing up

- Fertilizer-N supplies basic needs
- Regional variation exists and must be respected
- We have experience and technologies to manage N better
- The political, economic, and environmental interactions are complex
- Industry must be proactive and engaged, or risk the consequences