Corn- How Will Yield and Technology Advances Change Fertilizer Use? Fred Below

Crop Physiology Laboratory Department of Crop Sciences University of Illinois at Urbana-Champaign

Fertilizer Outlook and Technology Conference Savannah, Georgia November 19, 2019

Test Your Knowledge of Agriculture and US Politics

What does President
Trump think about Corn?

President Trump Likes Corn

What is the world record corn yield and what is the corn yield gap?

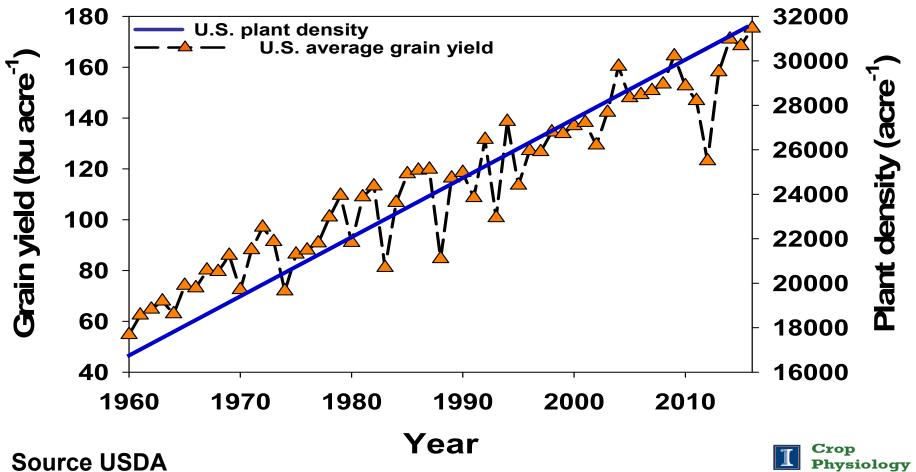
The Corn Yield Gap

- World Record yield of 542.2740 bushels per acre in 2017
- US average yield of 178 bushels per acre in 2018
- Yield Gap = Record Yield Average Yield = 364 bushels

 Which management factor for corn production has changed the most in the last 50 years?

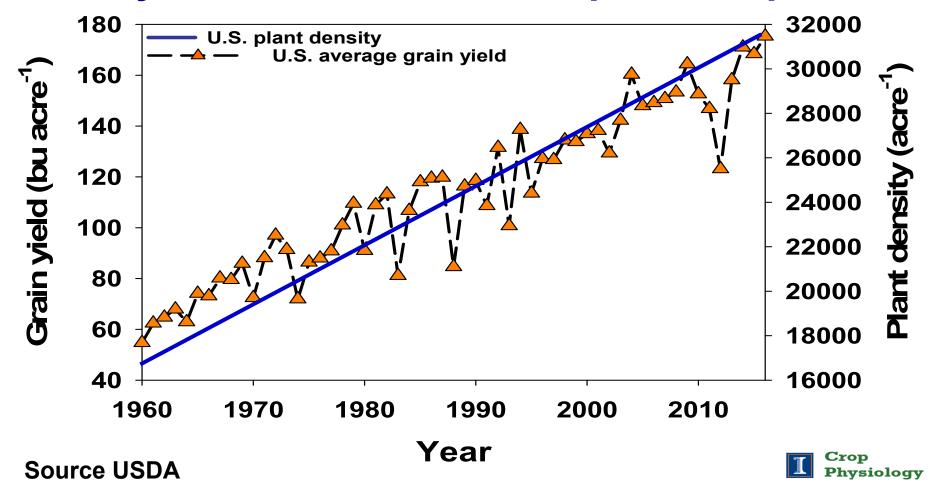
Which Management Factor for Corn Production has Changed the Most in the Last 50 Years?

- a) The tillage system used
- b) The yield potential of hybrids
- c) The plant population or number of plants per unit area
- d) The amount of fertilizer applied
- e) A shift towards earlier planting



Which Management Factor for Corn Production has Changed the Most in the Last 50 Years?

- a) The tillage system used
- b) The yield potential of hybrids
- c) The plant population or number of plants per unit area
- d) The amount of fertilizer applied
- e) A shift towards earlier planting


How Have Corn Yields Increased?

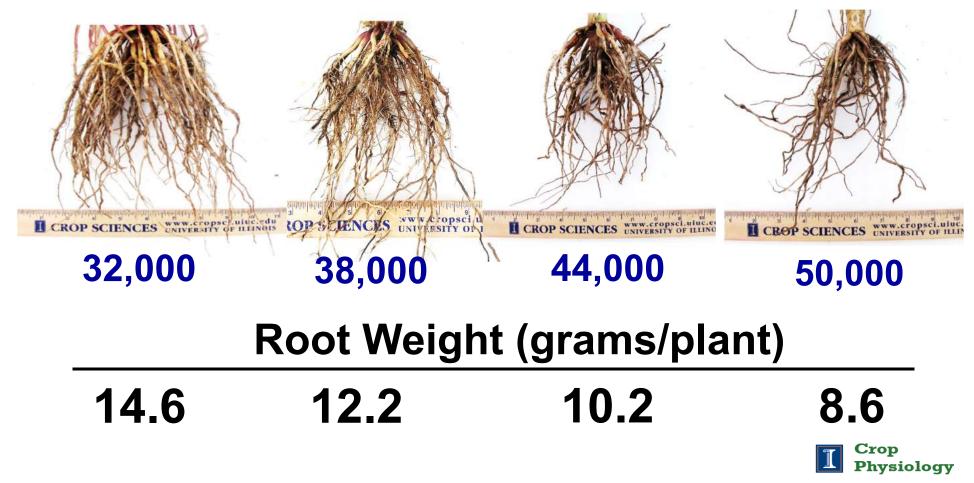
Grain Yield is a Product **Function of Yield Components** Yield = (plants/acre) x (kernels/plant) x (weight/kernel)

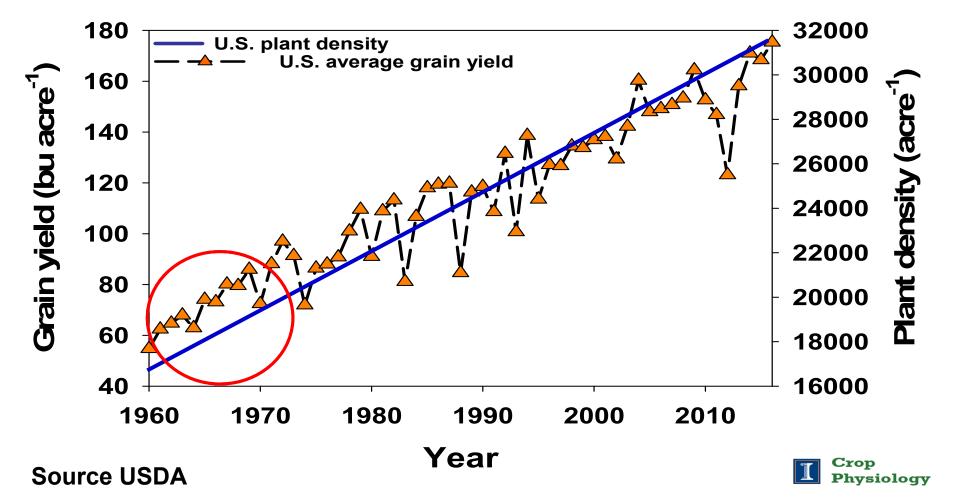
Density Increases 300 Plants per Acre per Year

Grain Yield is a Product **Function of Yield Components** Yield = (plants/acre) x (kernels/plant) x (weight/kernel)

 What happens to the size of each plant's root system as the plant population is increased?

It Gets Smaller




Root Size Decreases with Increasing Density

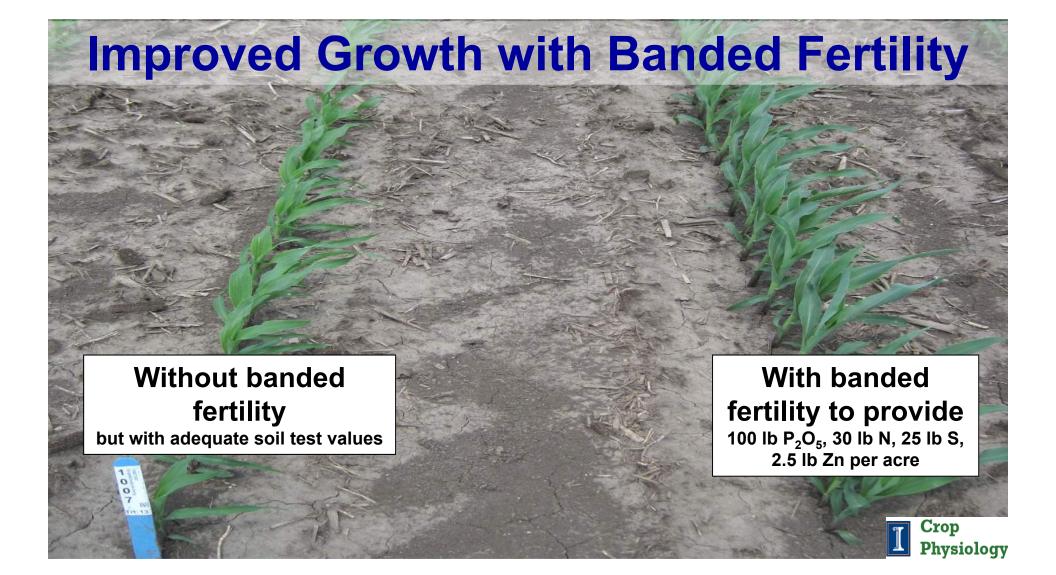
- When were soil test values calibrated to corn yields?
 - In the 60's and Early 70's

Soil Test Values Calibrated to Yield in the 60's and 70's

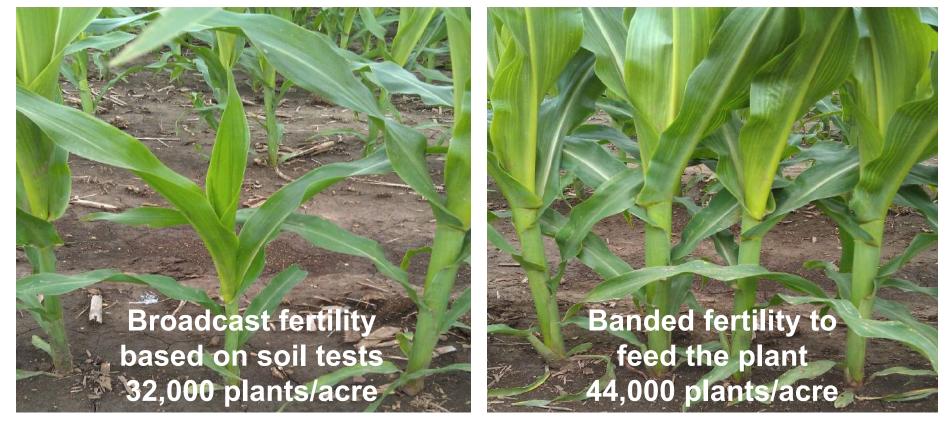
Fertility Needs for Corn Based on Soil Test Data

 Soil test values calibrated to yield in the 60's and 70's

vsioloav


 Do higher plant populations and more productive germplasm necessitate better fertilization strategies for corn?

 How can we ensure adequate soil fertility for high yields?
Better Placement, Source, Time, and Rate



Seeding Corn Crop 2 Inches Deep Directly Over the Fertilizer Band

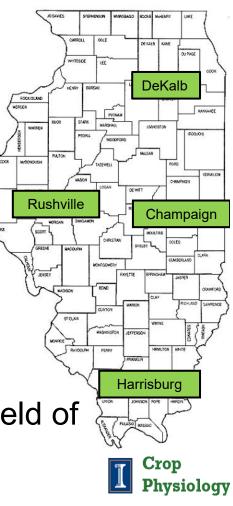
No Corn Plant Left Behind

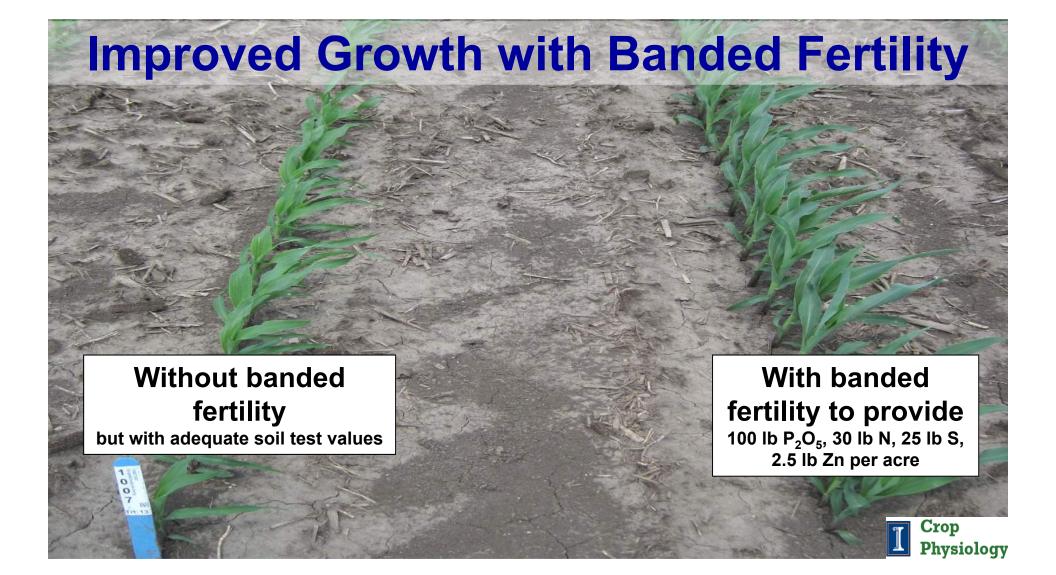
Banded Fertility = 250 lbs/acre MicroEssentials-SZ = 30 N, 100 P₂O₅, 25 S, and 2.5 Zn

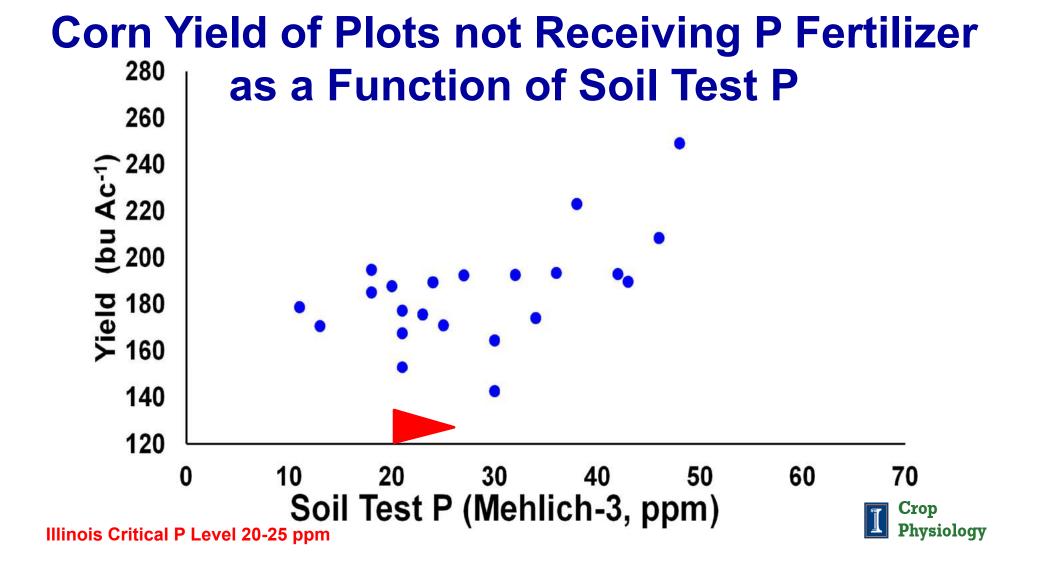
Key Takeaways

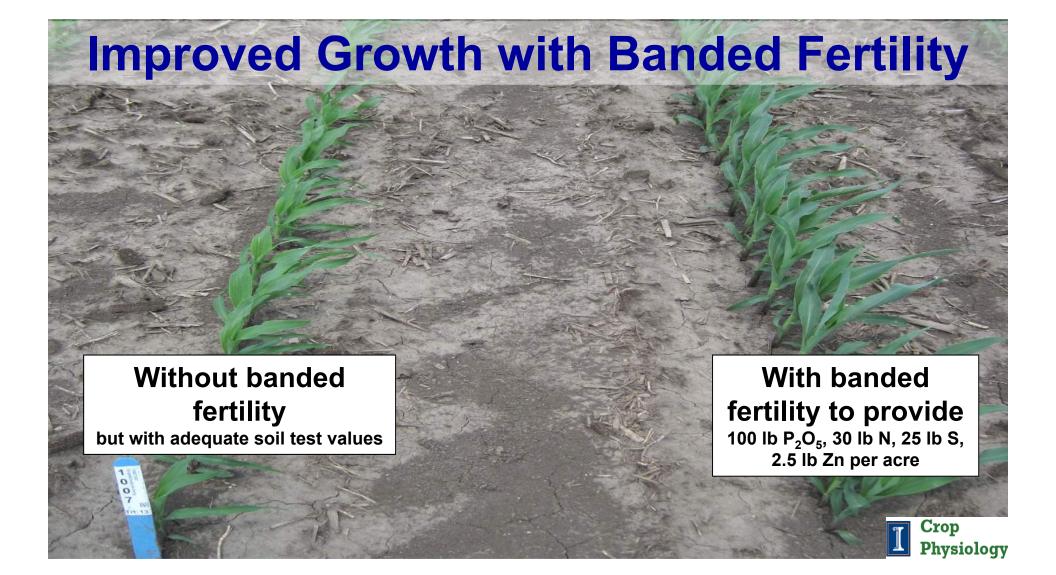
- Increasing plant populations and higher yields necessitate better placement of fertilizers
- Banded fertility ensures key nutrients are placed for best root interception and sets the growth trajectory and potential for higher yields

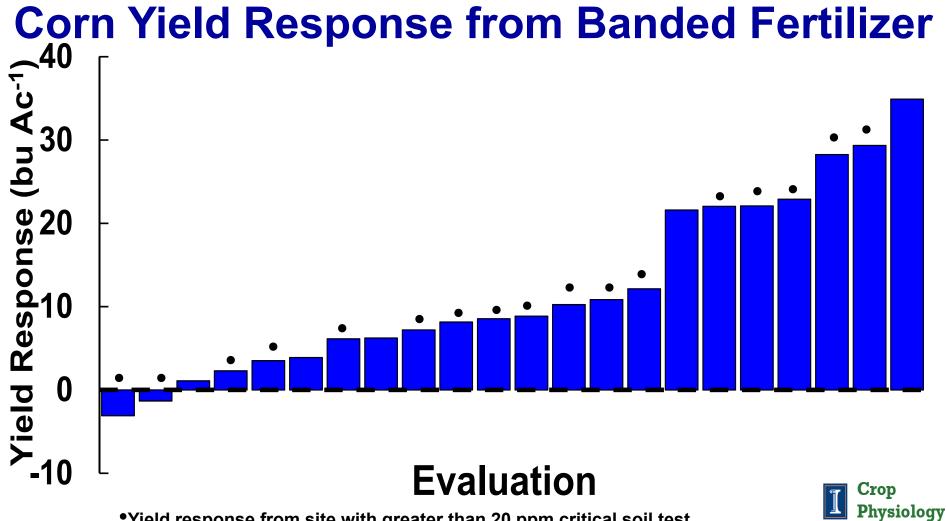
Research Question

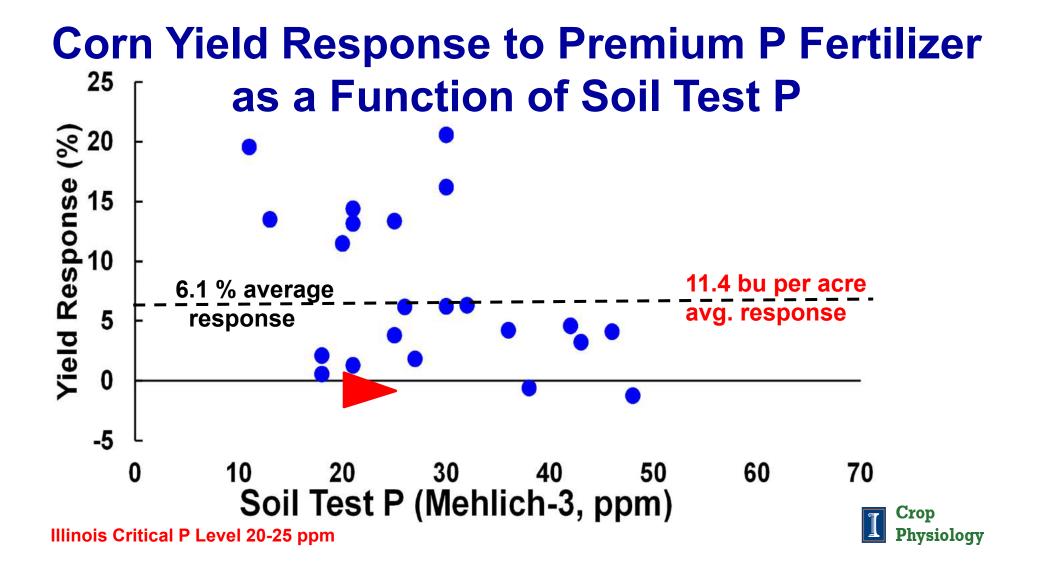

 Is the soil P test adequately calibrated to corn yield when a premium P fertilizer is banded directly under the crop row?




Corn Fertility Response Trials


4 sites in Illinois with:


- 22 Evaluations (6 in 2011, 2 in 2012, 8 in 2013, 3 in 2014 and 3 in 2015) at 4 sites
- Banded a premium P fertilizer at planting (250 Ibs/acre MicroEssentials-SZ) to provide 30 lbs
 N, 100 lbs P₂O₅, 25 lbs S, & 2.5 lbs Zn per acre
- Different company seed, standard management and plant population of 32,000 plants/acre
- Measured soil P before planting and compared yield of unfertilized plots to yield with banded P fertilizer



•Yield response from site with greater than 20 ppm critical soil test

Key Takeaway

 Soil test P values may not be calibrated for the greater yield potential of modern corn hybrids, especially when banded nutrients are placed directly under the crop row

 Which management factor under the growers control has the biggest impact on corn yield?

Nitrogen Fertilizer Management

Does weather impact nitrogen availability?

Weather Induced Nitrogen Loss

Test Your Knowledge of High Yield Corn

 Does nitrogen predominately move vertically (down) or horizontally (to the side) in the soil?

Nitrogen Deficiency to the Row Due to Vertical Soil Movement

180 lbs N preplant (Left) vs 180 lbs preplant + 80 lbs sidedress (Right)

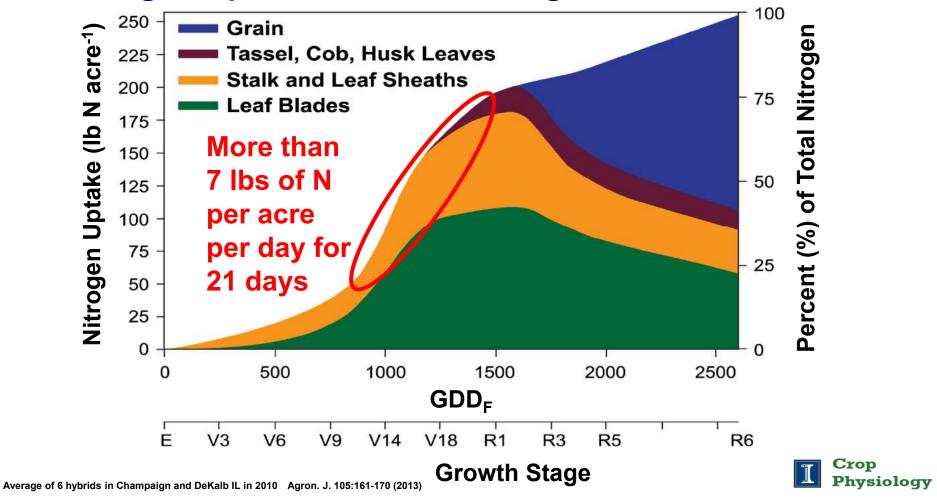
In-Season Y-Drop N Application

Research Y-Drop Applicator Courtesy of Yield 360

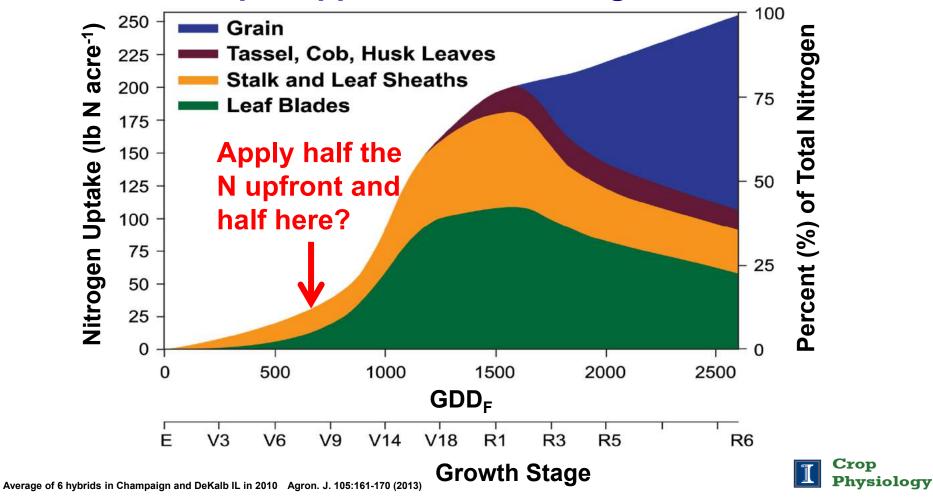
Mechanical Y-Drop Reseach Applicator

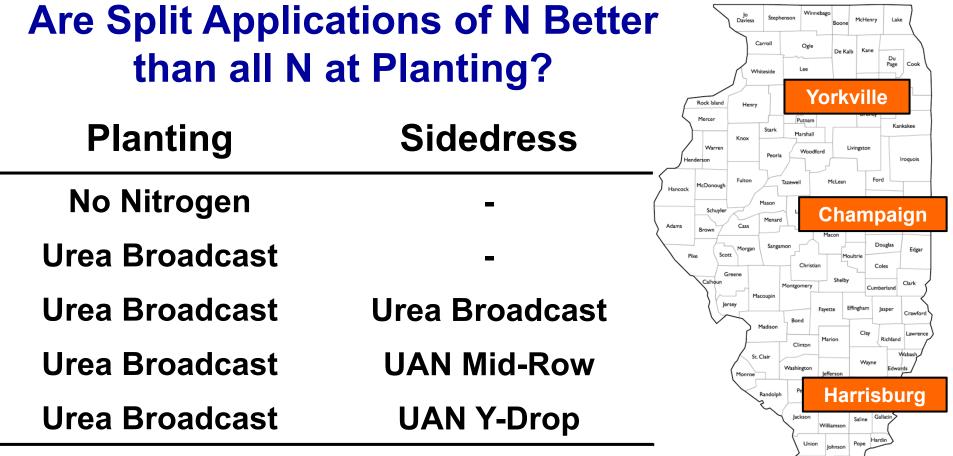
Test Your Knowledge of High Yield Corn

 Are split applications of N better than applying all the N upfront at preplant?



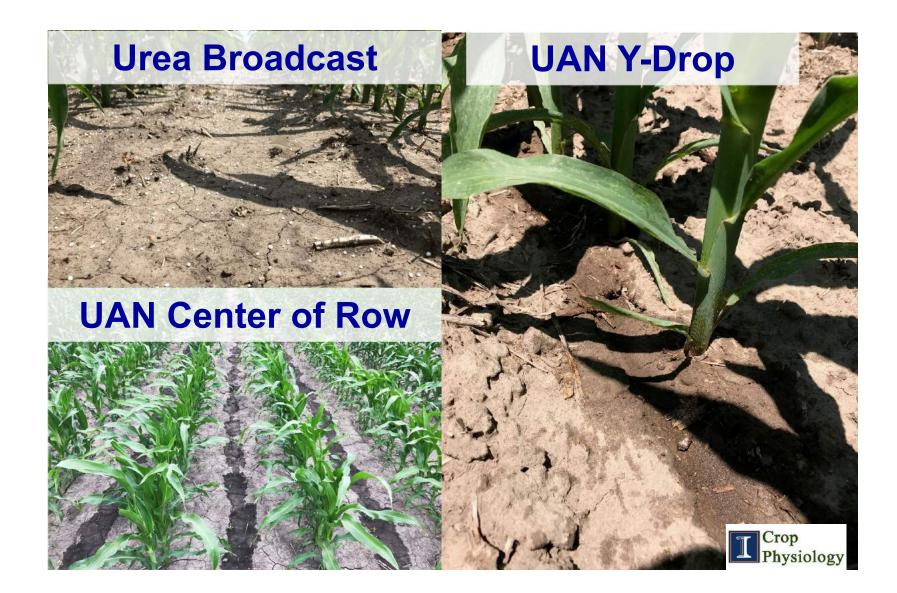
Test Your Knowledge of High Yield Corn

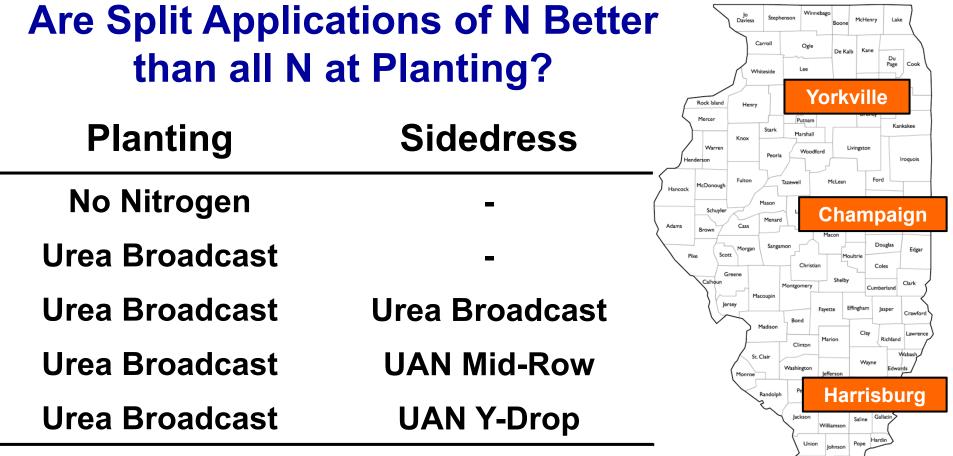

 When does N need to be available for maximum N uptake and grain yield?



Nitrogen Uptake and Partitioning for 230 Bushel Corn

Are Split Applications of Nitrogen Better?





Crop

Physiology

All treatments (except the no N control) received a total of 180 lbs of N/acre. Split applications received 90 lbs of N just before planting and 90 lbs of N/acre at the V8 growth stage. Two years 2017 and 2018.

Crop

Physiology

All treatments (except the no N control) received a total of 180 lbs of N/acre. Split applications received 90 lbs of N just before planting and 90 lbs of N/acre at the V8 growth stage. Two years 2017 and 2018.

Differences in Check Plot Yield Per Site

Year and Location	Check Plot Yield		
	bushels/acre		
2018 Harrisburg	97		
2018 Champaign	103		
2017 Champaign	184		
2018 Yorkville	195		
2017 Yorkville	208		
2017 Harrisburg	224		
Check Plot is viold without any N fortilizer applicati	on: what the soil supplies I Crop		

Check Plot is yield without any N fertilizer application; what the soil supplies I Physiology

Differences in Check Plot Yield Per Site

.

Year and Location Check Plot	
	bushels/acre
2018 Harrisburg	97
2018 Champaign	103
2017 Champaign	184
2018 Yorkville	195
2017 Yorkville	208

Check Plot is yield without any N fertilizer application; what the soil supplies I

2017 Harrisburg

224

Yield Difference from all N Applied Upfront and Sidedress with Different Placements

Check Plot	Upfront Urea	Placement of 90 lbs N Sidedress [†]			
Rank & Yield	Broadcast	Broadcast	Center Row	Y-Drop	
	bu/acre		∆ bu/acre		
18HB (97)	190	-7	-2	9	
18CU (103)	222	-8	-17*	6	
17CU (184)	256	-3	-25*	-11	
18YV (195)	232	3	9	15*	
17YV (208)	265	7	0	13	
17HB (224)	265	8	9	11	

⁺ Split application received 90 lbs N as broadcast urea upfront

* Nitrogen treatment significantly different than Upfront Urea Broadcast at α =0.05

Crop Physiology

Key Takeaways

- When the N supplied from the soil was low (as indicated by a low check plot yield), more N is needed at preplant
- Split applications of N increased yield in years and fields with high initial soil N, and the Y-drop method was the best way to sidedress N

Test Your Knowledge of High Yield Corn

 Does adequate fertility help other management practices work together (synergistically) to improve yield?

Standard Practice vs Enhanced System 2013-18

Production	Management System		
Factor	Standard	Enhanced	
Fertility	P & K based on soil test, no S or micros	Banded MicroEssentials-SZ for (Ibs/acre) 30 N, 100 P ₂ O ₅ , 25 S, & 2.5 Zn, <u>and</u> Broadcast Aspire for (Ibs/acre) 75 K ₂ O & 0.6 B	
Nitrogen	180 lbs/acre N preplant as UAN	180 lbs/acre UAN preplant + 60 lbs Sidedress (240 lbs total)	
Population	32,000 plants/acre	44,000 plants/acre	
Fungicide	No fungicide	Headline-AMP, Quilt-Xcel, or Trivapro at flowering	
Row Space	30 inches	20 inches	

Average Soil Analysis at Crop Physiology Laboratory Research Sites (2013-2018)

•				WHITESOE UE
		Location		
	DeKalb/ Yorkville	Champaign	Harrisburg	INTER BUCK SLAVE WARDAUL LANDING
OM (%)	4.5	3.6	2.2	
рН	6.3	6.3	6.6	
CEC	21.9	19.6	13.2	NOUZONEN N
P (ppm) [†]	45	38	26	
K (ppm) [†]	197	166	133	

JOEANES

STEPHENSON

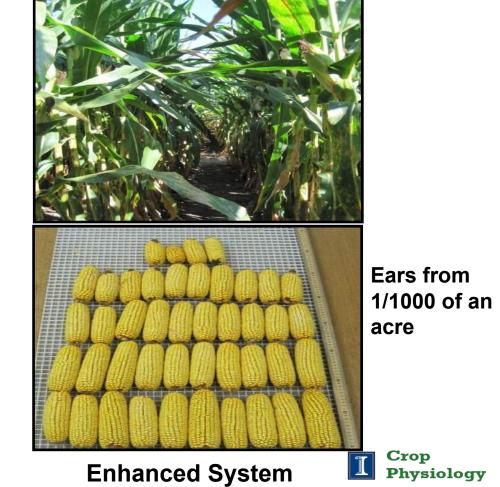
CARROLL OFLE

COASEMAN

DeKalb

[†] Mehlich 3 extractionAll soils are silt loams or silty clay loams

Standard Management vs Enhanced System


Standard Management

Standard Management vs Enhanced System

Standard Management

Corn Yield Response to Management

Year	Standard	Enhanced	Δ
		bushels acre ⁻¹	
2013	196	231	+35*
2014	193	238	+45*
2015	189	251	+62*
2016	227	272	+45*
2017	228	288	+60*
2018	245	303	+58*
Average	213	264	+51*

Average of 3 trials each in 2013, 2014, 2015, 2016, and 2 trials in 2017, 2018. *Significantly different at $P \le 0.05$.

Standard Practice vs Enhanced System 2013-18

Production	Management System		
Factor	Standard	Enhanced	
Fertility	P & K based on soil test, no S or micros	Banded MicroEssentials-SZ for (Ibs/acre) 30 N, 100 P ₂ O ₅ , 25 S, & 2.5 Zn, <u>and</u> Broadcast Aspire for (Ibs/acre) 75 K ₂ O & 0.6 B	
Nitrogen	180 lbs/acre N preplant as UAN	180 lbs/acre UAN preplant + 60 lbs Sidedress (240 lbs total)	
Population	32,000 plants/acre	44,000 plants/acre	
Fungicide	No fungicide	Headline-AMP, Quilt-Xcel, or Trivapro at flowering	
Row Space	30 inches	20 inches	

Omission-Addition Plot Experimental Design

	FACTORS					
	TREATMENT	Fertility	Nitrogen	Population	Fungicide	Row Space
	ENHANCED	P, S, Zn, K, B	Base + sidedress	44,000	Strobilurin	20 inches
Х	Fertility	Soil test	Base + sidedress	44,000	Strobilurin	20 inches
Remove Technology	Nitrogen	P, S, Zn, K, B	Base + sidedress	44,000	Strobilurin	20 inches
Remechn	Population	P, S, Zn, K, B	Base + sidedress	32,000	Strobilurin	20 inches
Ĕ	Fungicide	P, S, Zn, K, B	Base + sidedress	44,000	none	20 inches
	Row Space	P, S, Zn, K, B	Base + sidedress	44,000	Strobilurin	30 inches
	STANDARD	Soil test	Base	32,000	none	30 inches
λ	Fertility	P, S, Zn, K, B	Base	32,000	none	30 inches
Add Technology	Nitrogen	Soil test	Base + Sidedress	32,000	none	30 inches
Add chno	Population	Soil test	Base	44,000	none	30 inches
Te	Fungicide	Soil test	Base	32,000	Strobilurin	30 inches
	Row Space	Soil test	Base	32,000	none	20 inches

Standard Practice vs Enhanced System 2013-18

Production	Management System		
Factor	Standard	Enhanced	
Fertility	P & K based on soil test, no S or micros	Banded MicroEssentials-SZ for (Ibs/acre) 30 N, 100 P ₂ O ₅ , 25 S, & 2.5 Zn, <u>and</u> Broadcast Aspire for (Ibs/acre) 75 K ₂ O & 0.6 B	
Nitrogen	180 lbs/acre N preplant as UAN	180 lbs/acre UAN preplant + 60 lbs Sidedress (240 lbs total)	
Population	32,000 plants/acre	44,000 plants/acre	
Fungicide	No fungicide	Headline-AMP, Quilt-Xcel, or Trivapro at flowering	
Row Space	30 inches	20 inches	

Add One Enhanced Factor to Standard – 2013-18

Add One Enhanced Factor	Yield	Δ
	bushel	s acre ⁻¹
Standard Management	213	
+Fertility (100 P₂O₅ 25 S, 2.5 Zn 75 K₂O, 0.6 B)	225	+12*
+Nitrogen (60 lbs extra N as sidedress)	223	+10*
+Population (44,000 plants/acre)	212	-1
+Fungicide (strobilurin at flowering)	220	+7*
+Row Spacing (20 inch rows)	223	+10*

Average of 3 trials each in 2013, 2014, 2015, 2016, and 2 trials in 2017, 2018. *Significantly different at $P \le 0.05$.

Crop Physiology

Omission-Addition Plot Experimental Design

	FACTORS					
	TREATMENT	Fertility	Nitrogen	Population	Fungicide	Row Space
	ENHANCED	P, S, Zn, K, B	Base + sidedress	44,000	Strobilurin	20 inches
Х	Fertility	Soil test	Base + sidedress	44,000	Strobilurin	20 inches
Remove Technology	Nitrogen	P, S, Zn, K, B	Base + sidedress	44,000	Strobilurin	20 inches
Remechn	Population	P, S, Zn, K, B	Base + sidedress	32,000	Strobilurin	20 inches
Ĕ	Fungicide	P, S, Zn, K, B	Base + sidedress	44,000	none	20 inches
	Row Space	P, S, Zn, K, B	Base + sidedress	44,000	Strobilurin	30 inches
	STANDARD	Soil test	Base	32,000	none	30 inches
λ	Fertility	P, S, Zn, K, B	Base	32,000	none	30 inches
Add Technology	Nitrogen	Soil test	Base + Sidedress	32,000	none	30 inches
Add chno	Population	Soil test	Base	44,000	none	30 inches
Te	Fungicide	Soil test	Base	32,000	Strobilurin	30 inches
	Row Space	Soil test	Base	32,000	none	20 inches

Omit One Enhanced Factor	Yield	Δ	
	bushels acre		
Enhanced (all five Factors)	264		
-Fertility (P & K from soil test no S, Zn, or B)	244	-20*	
-Nitrogen (no extra from sidedress)	254	-10*	
-Population (only 32,000 plants/acre)	245	-19*	
-Fungicide (no fungicide)	255	-9*	
-Row Spacing (30 inch rows)	244	-20*	

Average of 3 trials each in 2013, 2014, 2015, 2016, and 2 trials in 2017, 2018. *Significantly different at $P \le 0.05$.

Crop Physiology

Standard vs E	nhanced	Manage	ment 20	13-18
Factor	Standard		Enhanced	
	Yield	Δ	Yield	Δ
	bushels acre-1			
None or All	213		264	
Fertility	225	+12*	244	-20*
Nitrogen	223	+10*	254	-10*
Population	212	-1	245	-19*
Fungicide	220	+7*	255	-9*
Row Spacing	223	+10*	244	-20*

Crop

Physiology

Average of 3 trials each in 2013, 2014, 2015, 2016, and 2 trials in 2017, 2018. *Significantly different at $P \le 0.05$.

Key Takeaway Feeding, protecting and managing more plants is the key to higher yields

Crop Physiology Laboratory Team

Principal Research Specialist

- Juliann Seebauer
- **Field Technician**
 - Jared Fender
- Ph.D. Students
 - Connor Sible
 - Eric Winans
 - Scott Foxhoven

Master's Students

- Vitor Favoretto
- Ben Wiegmann
- Logan Woodward
- Keith Enhle
- Dylan Guenzberger

Visiting Research Scholars

- Rodrigo Garrido
- Marcos Loman

The Crop Physiology Laboratory Financial and Product Support for 2019

- •ADM
- •AdvanSix
- Agricen
- Agrigold
- •Agrinos
- •Agrocete
- •Azotic
- •BASF
- •Bayer
- Brandt
- •Calmer Corn Heads
- •Crystal Green Fertilizer
- Fluid Fertilizer Foundation

- •Helena
- •Illini FS
- •John Deere
- Montag
- •Mosaic
- Netafim
- •NREC
- Nutrien
- •Pivot Bio
- •QLF
- •Sipcam Agro

- •Sirius Minerals •Soil Biotics
- •Sound Ag
- Stewart Farms
- •Syngenta
- Tessenderlo Kerley
- United Prairie
- United Soybean Board
- Valagro
- Verdesian
- •West Central
- •WinField United

Crop Physiology

Special Thanks to The Fertilizer Institute

For More Information: Crop Physiology Laboratory University of Illinois http://cropphysiology.cropsci.illinois.edu

