Irrigated Crop Management Effects On Productivity, Soil Nitrogen, and Soil Carbon

Dr. Ardell D. Halvorson
Dr. Arvin R. Mosier
Mr. Curtis A. Reule
USDA, Agricultural Research Service
2150 Centre Avenue, Bldg. D, Suite 100
Fort Collins, CO 80526

Email: ardell.halvorson@ars.usda.gov

Background Information:

• Conversion of Grassland to Cropland
 – conventional tillage (CT) practices
 – loss of soil organic matter (SOM)
 – release of carbon dioxide (CO₂) to the air
• Global Warming – Greenhouse Gases
 – CO₂ increased from 280 ppm (pre-industrial) to 370 ppm in 2000
 – Nitrous Oxide (N₂O) – increased from 275 ppb to 317 ppb in 2000
 – Methane (CH₄) – increased from 700 ppm to 1800 ppm in 2000
• Reduced-Till (RT) and No-Till (NT) Farming Systems
 – reduce SOM decomposition and reduce CO₂ emissions
Background Information:

- **Fertilization for Optimum Grain Yield and Economic Returns**
 - also maximizes crop residue production
 - enhances potential for SOC sequestration.

- **Nitrogen Fertilization**
 - may enhance residue decomposition and SOC sequestration
 - may increase residual soil NO$_3$-N available for leaching
 - increases nitrous oxide (N$_2$O) emissions

- **Limited Information Is Available Under Irrigated Conditions**
 - For RT and NT systems
 - N and Tillage affects on SOC sequestration

Research Objectives:

- **Document the influence of N and tillage management on irrigated:**
 - Corn yields
 - Corn residue production
 - Soil organic C (SOC) sequestration
 - Total Soil N (TSN)
 - NO$_3$-N leaching potential
 - N$_2$O emissions
Research Sites and Environment:

• **Locations and Soil Texture:**
 – Dalhart, TX -- Dallam fine sandy loam soil
 – Texline, TX -- Conlen and Dumas clay loam soils
 – Fort Collins, CO -- Fort Collins clay loam soil

• **Cropping System:** Continuous Corn

• **Irrigation:** Center Pivot (Texas) or Linear Move (Colorado)

• **Tillage Systems**
 – Texas sites used RT (disk/ripper implement)
 – Colorado site used NT system and CT system (disk, moldboard plow, mulcher, land leveler, etc.)

• **N Treatments – Texas Sites**
 – N1 (N fertilizer for >250 bu/a corn yield)
 – N2 (N1 rate plus additional liquid N applied to residue)

• **N Treatments – Fort Collins Site**
 – CT – four N rates from 0 to 180 lb N/a
 – NT – six N rates from 0 to 180 lb N/a
DMI Eco-Tiller used at Dalhart, Nov. 1999

DMI Eco-Tiller Shank, tillage about 12 to 15 inches deep
ARROYO FARMS
Dalhart, TX

Normal Fertilizer Rate = N1
High Fertilizer Rate = N2

Pivot #8

New Sampling Locations (30 Oct 01)

x Marks Sampling spot in Corn

located past 3rd tower wheel track
located past 2nd tower wheel track

Dalhart, Oct. 2001
Dalhart, Sept. 2002

POOLE FARMS

Normal Fertilizer Rate = N1

High Fertilizer Rate = N2

Pivot #5

x Marks Sampling spot in Corn

located past 2nd tower wheel track

New Soil Sampling Locations (30 Oct 01)

POOLE FARMS
Texline, TX
Texas Nitrogen Treatments

- N1 = normal N rate applied to achieve >250 bu/a corn yields. Desired yield goal is 300+ bu/a corn.
- N2 = normal N rate plus liquid N fertilizer applied to corn residues after harvest to aid residue decomposition.
- N Rates varied with year and location.
- Other nutrients were also applied.

<table>
<thead>
<tr>
<th>Crop Year</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td>'99 Dalhart</td>
<td>300</td>
<td>350</td>
</tr>
<tr>
<td>'00 Dalhart</td>
<td>300</td>
<td>350</td>
</tr>
<tr>
<td>'01 Dalhart</td>
<td>300</td>
<td>350</td>
</tr>
<tr>
<td>'02 Dalhart</td>
<td>300</td>
<td>350</td>
</tr>
<tr>
<td>'99 Texline</td>
<td>300</td>
<td>350</td>
</tr>
<tr>
<td>'00 Texline</td>
<td>300</td>
<td>350</td>
</tr>
<tr>
<td>'01 Texline</td>
<td>300</td>
<td>350</td>
</tr>
<tr>
<td>'02 Texline</td>
<td>300</td>
<td>350</td>
</tr>
</tbody>
</table>
Average Yield from Combine Yield Monitor

Crop Year

Corn Grain Yield (bu/a)

Normal N (N1)
Normal + Fall N (N2)

'99 '00 '01 '02 Avg '99 '00 '01 '02 Avg

Dalhart Texline

Estimated in Early-Mid September

Crop Year

Corn Residue (lb/a)

'99 '00 '01 '02 Avg '99 '01 '00 '02 Avg

Dalhart Texline

N1 N2
September Biomass Sampling

Crop Year

Corn Residue C (lb C/ha)

'99 '00 '01 '02 Avg '99 '00 '01 '02 Avg

Dalhart Texline

Change in SOC (0 - 6" soil depth)

Soil Organic C (t/ha)

Y = 7.652 + 0.895X

r^2 = 0.81

Texline

Y = 11.630 + 0.779X

r^2 = 0.87

Dalhart

After Crop Year

1 2 3 4
Change in TSN (0 - 6" soil depth)

Total Soil N (lb N/a)

Texline
$Y = 1570 + 175X$
$r^2 = 0.79$

Dalhart
$Y = 2235 + 229X$
$r^2 = 0.90$

Soil NO$_3$-N After Corn Harvest - Texas Sites
Colorado Site
Average of 2000-2002

Fertilizer Rate (lb N/a)

Residue C/N Ratio

Change in SOC (0 - 6 inch depth)

Soil Organic C (t/a)

Time (years)

Y = 11.17 + 0.641X
\(r^2 = 0.93 \)

Y = 10.5 + 0.071X
\(r^2 = 0.02 \)
Soil N After Harvest 2002 - Ft. Collins Site

N Fertilizer rate (lb N/a)

Residual Soil NO₃-N (lb N/a)

(0 - 6 ft depth)

Greenhouse Gas Emissions and Global Warming Potential

Fort Collins, CO Site
Nitrous Oxide (N_2O) Flux (April '02 to April '03)

N Fertilizer Rate, kg N/ha

CT

NT

0 134 202

N_2O Flux (ug N m$^{-2}$ hr$^{-1}$)

0 5 10 15 20 25

N Fertilizer Rate, kg N/ha
Carbon Dioxide (CO₂) Flux (January to April '03)

N Fertilizer Rate (kg N ha⁻¹)

CO₂ Flux (µg C m⁻² hr⁻¹)

0 10 20 30 40

CT NT

Net Global Warming Potential (GWP)
(April 2002 to April 2003 in CO₂ equivalents)

GWP (kg CO₂ ha⁻¹ yr⁻¹)

-2000 -1500 -1000 -500 0 500 1000 1500 2000 2500 3000

CT(C-C) NT(C-C)

N Fertilizer rate (kg N ha⁻¹)
Summary of Findings - Texas

- Applying liquid N to corn residue after harvest has not enhanced SOC sequestration after 4 corn crops, but did increase residual soil N levels.
- N fertilizer rate exceeded N needs for yield potential, therefore, excess N available for leaching.
- SOC – increased with each additional crop year in these RT irrigated systems.
- SOC in cropped area exceeds that in native sod.
- Changes in TSN follow same trends as SOC.

Summary of Findings - Colorado

- N fertilization is essential to optimize grain yield potential.
- Residue C returned to soil increased with increasing N rate in CT and NT systems.
- SOC increased each year in NT system but not in CT system.
- N rate has not influenced SOC sequestration significantly after only 4 corn crops.
- N\textsubscript{2}O emissions increased with increasing N rate.
- GWP was decreased by converting from CT to NT, but increased with increasing N rate.
THANKS!!!

Jim Poole, Poole Chemical
FLUID FERTILIZER FOUNDATION
USDA-CSREES-NRI Grant
CASMGS Grant

FOR SUPPORTING
THESE PROJECTS