# Overview of Methodologies to Improve Sustainability Through Nutrient Use Efficiency

# 2010 FERTILIZER AND TECHNOLOGY CONFERENCE

SAVANNAH, GEORGIA November 18, 2010

Greg Schwab, Ph.D. University of Kentucky

# Traditional Nitrogen Response Studies



# Fundamental Principle of Agronomy

## There is **NO** such thing as **MAGIC**



Math, Chemistry, Physics, Physiology...

$$e=mc^2$$

# e=mc<sup>2</sup> Boundary Condition

# Maximum amount of energy that can be extracted from an object



What is the boundary condition for fertilizer use efficiency?

# **Traditional N Boundary Condition**

**Example:** 

| Treatment Ib N/acre | Grain N Removed<br>lb | NUE<br>% |
|---------------------|-----------------------|----------|
| 0                   | 50                    |          |
| 100                 | 110                   |          |
| 150                 | 130                   |          |

Worldwide, nitrogen use efficiency for cereal production (wheat, corn, rice, barley, sorghum, millet, oats, and rye) is approximately 33%.

(Raun and Johnson, 1999)

# Nitrogen Boundary Condition



# **Ecological N Efficiency**



Boundary Condition

Monoculture Corn – No N Loss

N Applied = N removed

Real World Condition

N Applied + Other Sources =

N Removed + N Lost

## Monoculture Corn – No N Loss



# Nitrogen Boundary Condition

### Monoculture Corn – No N Loss

| Treatment Ib N/acre | Grain N Removed<br>lb | NUE<br>% | ENE<br>lb |
|---------------------|-----------------------|----------|-----------|
| 0                   | 50                    |          | -50       |
| 100                 | 110                   | 60       | -10       |
| 150                 | 130                   | 53       | +20       |

ENE – Ecological Nitrogen Efficiency

Title: Methodologies to Improve Sustainability

Through Nutrient Use Efficiency



## How Close Are We to e=mc<sup>2</sup>



## How Close Are We to e=mc<sup>2</sup> in Iowa

### MRTN – Maximum Return to Nitrogen

Corn Nitrogen Removal = 0.7 lb per bushel



# MRTN – Maximum Return to Nitrogen



# Yield Goal Approach

Recommended range using

1.2 x Yield <u>+</u> 19 lbs N/acre



28 Sites Within Range

## Ideal vs. Real-world

#### Maximum Possible 0.7 x yield



Why is there so much scatter?

# Past Management Makes a Difference



(Mengel et al., 2007)

# Lessons from the N Rate Calculator (According to Schwab)



The EONR method **DOES NOT** improve ecological efficiency or sustainability

#### Improvements are possible if you understand the scatter

#### **Environment Losses**

Past N Mgt

Precipitation

**Placement** 

Drainage

Volatilization

Immobilization

Denitrification

Leaching

## Genetics??

#### BT-Rootworm is... NOT USEFULL....

Unless nitrogen is captured that would have otherwise been lost



#### Genetics could be used to

Reduce nitrogen in the grain (reduce protein)

Engineer corn to 'fix' nitrogen (but this also has a cost)





# Key – Control Nitrogen Loss



## Fertilizer Technologies – Nitrogen Stabilizers





# Fertilizer Technologies – Coatings







# Precision Agriculture



## **Spatial Estimation**

Nitrogen Loss

**Yield Potential** 

Nitrogen Supply

(Contribution from Legumes)

# Legumes





# Integrated System – An Ecologically Sustainable Approach



# Integrated System – An Ecologically Sustainable Approach



High input includes added MESZ, SuperU, genetics, plant population and fungicide

## Conclusions – Strive for e=mc<sup>2</sup>

### 100% Fertilizer Recovery is NOT Sustainable

Fertilizer Recommendations Should be Made in the Context of the 4R Program

- Right Rate
- Right Source
- Right Placement
- Right Time

