d Below, Jason Haegele, Ross Bender, A Adam Henninger Crop Physiology Laboratory Department of Crop Sciences Inversity & Illinote at Urbana-Champater 2012 Fertilizer Outloek & Technology Conference Philadelphia, PA November 13, 2012

Crop Physiology

- Ranks those factors that each year can have a positive (and sometimes negative) impact on corn yield
- •Gives each factor an average bushel per acre value

Crucial Prerequisites, but not Yield Wonders

- •Drainage
- Pest/Weed Control
- Proper soil pH & adequate levels of P and K based on soil tests

Rank	Factor	Value
		bu/acre
1	Weather	70+
2	Nitrogen	70
3		
4		
5		
6		
7		

Rank	Factor	Value
		bu/acre
1	Weather	70+
2	Nitrogen	70
3	Hybrid	50
4		
5		
6		
7		

Rank	Factor	Value
		bu/acre
1	Weather	70+
2	Nitrogen	70
3	Hybrid	50
4	Previous Crop	25
5		
6		
7		

Rank	Factor	Value
		bu/acre
1	Weather	70+
2	Nitrogen	70
3	Hybrid	50
4	Previous Crop	25
5	Plant Population	20
6		
7		

How have corn yields increased?

Source USDA

Rank	Factor	Value
		bu/acre
1	Weather	70+
2	Nitrogen	70
3	Hybrid	50
4	Previous Crop	25
5	Plant Population	20
6	Tillage	15
7		

Rank	Factor	Value
		bu/acre
1	Weather	70+
2	Nitrogen	70
3	Hybrid	50
4	Previous Crop	25
5	Plant Population	20
6	Tillage	15
7	Growth Regulators	10

Rank	Factor	Value	
		bu/acre	
1	Weather	70+	
2	Nitrogen	70	
3	Hybrid	50	
4	Previous Crop	25	
5	Plant Population	20	
6	Tillage	15	
7	Growth Regulators	10	
	TOTAL	260 bu	Crop
iven key prered	quisites	1	Physiolog

How to Get High Corn Yields?

- Optimize each of the seven wonders and their positive interactions
- Provide better prerequisites, season long weed control & balanced fertility/nutrition

Prerequisites for High Yields?

- Proper soil pH & adequate levels of P and K based on soil tests
- Fertility- Use application and fertilizer technologies to supply required crop nutrition

Nutrition Needed for 230 Bushel Corn

Nutrient	Required to Produce	Removed with Grain	Harvest Index
	lbs/a	acre	%
Ν	256	148	58
P_2O_5	101	80	79
K ₂ O	180	58	32
S	23	13	57
Zn (oz)	7.1	4.4	62
B (oz)	1.2	0.3	23

Crop Physiology

Average of 6 hybrids in Champaign and DeKalb IL in 2010.

N Uptake & Partitioning for 230 Bushel Corn

Average of 6 hybrids in Champaign and DeKalb IL in 2010

Agron Journal 2013 in press

P Uptake & Partitioning for 230 Bushel Corn

Average of 6 hybrids in Champaign and DeKalb IL in 2010

Agron Journal 2013 in press

Physiology

Zn Uptake & Partitioning for 230 Bushel Corn

Average of 6 hybrids in Champaign and DeKalb IL in 2010

Agron Journal 2013 in press

Physiology

Standard vs. High Tech 2009/10

- **Fertility** No P or K based on soil test 100 lbs P₂O₅ as MESZ (N, P, S, & Zn)
- Nitrogen180 lbs pre-plant as UAN100 lbs extra N sidedress as Super-U
- **Genetics** RR Refuge Hybrid (DKC 61-22) Triple stack Hybrid (DKC 61-19) Both with soil insecticide at planting
- **Population 32,000 plants/ac vs 45,000 plants/ac** Both in 30 inch rows and twin rows in 2010
- Fungicide No Fungicide Headline or Quilt-Xcel (@ R1)

High Tech Package vs Traditional 2009/10

Ears from 1/1000 of an acre

High Technology Package

Standard Practice

Omission Plot Experimental Design

FACTORS

	TREATMENT	Fertility	Nitrogen	Genetics	Population	Fungicide
	HIGH TECH	MESZ	Base + Slow release	Triple stack	45,000	Strobilurin
gy	Fertility	No P & K	Base + Slow release	Triple stack	45,000	Strobilurin
nolo	Nitrogen	MESZ	Base	Triple stack	45,000	Strobilurin
Tech	Genetics	MESZ	Base + Slow release	Refuge	45,000	Strobilurin
nove	Population	MESZ	Base + Slow release	Triple stack	32,000	Strobilurin
Rer	Fungicide	MESZ	Base + Slow release	Triple stack	45,000	none
	STANDARD	No P & K	Base	Refuge	32,000	none
N	Fertility	MESZ	Base	Refuge	32,000	none
lology	Nitrogen	No P & K	Base + Slow release	Refuge	32,000	none
ech	Genetics	No P & K	Base	Triple stack	32,000	none
I DD	Population	No P & K	Base	Refuge	45,000	none
Ă	Fungicide	No P & K	Base	Refuge	32,000	Strobilurin

Add One Enhanced Factor to Standard Management

Standard System

Add One Enhanced Factor	Yield	Δ
	bu a	acre ⁻¹
Standard Management	193	
+Fertility (extra N, P, S, Zn)	197	+ 4
+Nitrogen (protected from weather loss)	198	+ 5
+Genetics (biotech insect protection)	202	+ 9
+Population (45,000 plants/acre)	187	- 6
+Fungicide (strobilurin at flowering)	198	+ 5
LSD (p<0.10) = 6 Data from Champaign and Dixon Springs in	2009 & 2010	Crop Physiology

Omit One Enhanced Factor from High Tech System High Tech System

Omit One Enhanced Factor	Yield	Δ
	bu a	cre ⁻¹
High Tech all Five Factors	245	
-Fertility (fertility from soil test)	236	- 9
-Nitrogen (unprotected from loss)	232	-13
-Genetics (-biotech insect protection)	225	-20
-Population (only 32,000 plants/acre)	238	- 7
-Fungicide (no fungicide)	218	-27

LSD (p<0.10) = 6 Data from Champaign and Dixon Springs in 2009 & 2010

Traditiona	al vs Hi	gh-Tec	<u>:h Two </u>	<u>lears</u>
	Traditi	Traditional		ſech
Factor	Yield	Δ	Yield	Δ
		bu a	cre ⁻¹	
None or All	193		245	
Fertility	197	+ 4	236	- 9
Nitrogen	198	+ 5	232	-13
Genetics	202	+ 9	225	-20
Population	187	- 6	238	- 7
Fungicide	198	+ 5	218	-27
LSD (p<0.10) = 6	Data from Ch	nampaign and	Dixon Springs	Crop

Data from Champaign and Dixon Springs

Standa	rd vs High Tech – 2011/12
Fertility	No or fall P or K based on soil test
	100 lbs P ₂ O ₅ as MESZ (N, P, S, & Zn) Banded 4-6" directly under row at planting
Nitrogen	180 lbs pre-plant as urea
	180 lbs pre-plant SuperU + 60 lbs sidedress urea with Agrotain
Genetics	Workhorse Management Hybrid Racehorse Management Hybrid Both triple-stack with soil insecticide at planting
Population	32,000 plants/ac vs 45,000 plants/ac Both final stand in 30 inch & some twin and 20 inch rows
Fungicide	No Fungicide Headline-Amp or Quilt-Xcel @ R1 I Physiology

Yield Response from High-Tech Management in 2011

Standard vs High-Tech 2011 **Standard High Tech** Factor **Yield Yield** Δ Λ bu acre⁻¹ 169 195 None or All 183 178 **Fertility** +14-17 177 184 Nitrogen + 8 -11 173 186 Genetics - 9 + 4 159 194 Population -10 - 1 Fungicide 184 172 - 8 +3

LSD (p<0.10) = 6 Average of 12 trials in Illinois In 2011

Improved Growth with Spring-Banded MESZ

Champaign, IL 2011

No Corn Plant Left Behind

Champaign, IL 2011

Drip irrigation allows for precise application of water and nutrients

Seven inches supplemental water during June and July

Champaign, 2012

Add One Enhanced Factor to Standard Management

Standard System

Physiology

Add One Enhanced Factor	Yield	Δ
	bu acre-1	
Standard Management	135	
+Irrigation (7 inches during June/July)	190	+55*
+Fertility (extra N, P, S, Zn)	138	+ 3
+Nitrogen (protected from weather loss)	132	- 3
+Population (45,000 plants/acre)	108	-27*
+Fungicide (strobilurin at flowering)	132	- 3
* Significantly different from standard at $P \le 0.05$.	ampaign, 2012	Crop Physiology

Omit One Enhanced Factor from High Tech System High Tech System

_	0	
Omit One Enhanced Factor	Yield	Δ
	bu acre-1	
High Tech all Five Factors	210	
-Irrigation (no supplemental water)	117	-93*
-Fertility (fertility from soil test)	197	-13*
-Nitrogen unprotected from loss)	209	- 1
-Population (only 32,000 plants/acre)	198	-12*
-Fungicide (no fungicide)	204	- 6
* Significantly different from high tech at $P \le 0.05$.	•	Crop

Champaign, 2012

Conclusions

- Yield gains are possible from a systems approach to crop management that combines individual practices known to impact yield
- Increasing plant population may be the foundation for pushing higher yields, but it must be managed and protected

Acknowledgements

Personnel

•Brad Bandy Tryston Beyrer •Tom Boas •Ryan Becker •Ross Bender •Fernando Cantao •Keila Cunha •Paulo Galvao Laura Gentry •Jason Haegele Mark Harrison •Cole Hendrix •Adam Henninger •Jim Kleiss •Brandon Litherland •Jack Marshall •Bianca Moura Matías Ruffo •Juliann Seebauer Marjorie Souza Logan Smith •Martín Uribelarrea Mike Vincent Kyle Vogelzang Wendy White

Financial Support

•AGCO •Agrium AgroFresh •BASF Dawn Equipment Dow AgroSciences •DuPont •GrowMark •Honeywell Illinois Corn Marketing Board Illinois Fertilizer Research Council •Koch Agronomic Services Monsanto Mosaic •Nachurs Netafilm Orthman Rosen's Inc. Syngenta Valent BioSciences WinField Solutions •Wyffels Hybrids

Very Special Thanks

- Mosaic
- BASF
- Monsanto
- Syngenta
- Koch Agronomic Services

For more information:

http://cropphysiology.cropsci.illinois.edu

