

Mauro Saviola Group

16 Companies belong to the Group
1630 employees

sadepan

- •577 millions of euro consolidated annual turn over
- 1,500,000 MT of recycling wood per year (it means 10,000 trees saved every day)
 Italian leader of the particleboard industry and the third in Europe
- •Mauro Saviola Group is active in 50 countries
- More than 1,000 trains of recycling wood collected in Europe every Year
- •175 trucks belong to the Group for the collection of recycling wood and to deliver the panels
- •16 different certifications of quality system, among these the ISO 9002, EMAS, E1 Catas Quality Award, Certiquality 100% and "FSC 100 % recycled"
- •1,500,000 mc of particleboards sold every year all over the world to produce furniture, waterproof ecological panel, fireproof ecological panel, flooring, ...
- •5 Research Institutes to study and design the range of creative decorative elements

Mauro Saviola Group

Agriculture Division

- •The main European producer of Methylene Urea
- •Two production plants of Methylene Urea (Viadana Italy and Genk – Belgium)
- Production process is a new patented technology, unique to achieve MU in granular forms (round granules), yielding the lowest content of unreacted urea and salinity index
- •Worldwide biggest plant to produce Methylene Urea in granular form (potentiality of *Pilot Plant* 35,000-40,000 MT/year)
- •Among the main european urea importers (over 300,000 MT/year)

Sadepan Chimica's Factories to manufacture Methylene urea

Mauro Saviola Group

Agriculture Division

Sadepan's **Methylene urea/ Urea Formaldehyde** uses new technology to produce the most completely reacted product on the market today. The position of Sadepan as a basic producer of Formaldehyde and the largest consumer of Urea in Italy insures a competitive position in the market place.

Mission

It is our mission to use our improved technology and strength as a basic producer to become a reliable supplier to the world for superior quality methylene urea fertilizer

Ecotechnology

INNOVATIVE FERTILIZERS

These fertilizers can be called innovative and are advantageous because they :

Improve the yield with greater productions (greater efficiency)

>reduce the costs and the cultural practices

Reduce or eliminate the impact on the ecosystem

Optimal Nitrogen fertilizer

An ideal nitrogen fertiizer should have the following characteristics (Shoji and Gandeza, 1992):

• with only one application satisfy the crop nutrients requirement during the whole vegetative-productive cycle;

• Have the greatest % of crop utilization (uptaking); the average amount usually uptaken from the crop is maximum 50-70% during the first year of application (Fink, 1992);

• without any negative environmental impact

The ideal choice is slow Release Nitrogen

Sadepan Chimica new manufacture technology

The raw materials used are:

•Urea (CO(NH₂)₂)

•Formaldehyde (HCHO)

The urea can be of national production or imported.

The formaldehyde is produced by Sadepan Chimica through a catalytic oxidation process of methanol (CH_3OH) . in 9 plant .

The Sadepan Chimica MU/UF production process can be summarized into 2 phases:

1) synthesis of the urea-formaldehyde syrup, which is alimented into the granulation plant;

2) granulation with the final screening of the finished product.

- this phase takes place into the polymerization reactors, in which the syrup is obtained;
- at the beginning, the formaldehyde and a part of urea react in controlled conditions;
- later on, the remaining urea is added up in different steps to obtain the short polymeric chains;
- making this, it is possible to obtain a product with a good distribution of the molecular weights, which positively affect the availability of the finished product.

•the liquid syrup is alimented in a fluid bed granulator where polymerization, drying contemporary granulation take place;

SADEPAN MU/UF products obtained by the new technology have:

INNOVATIVE PHYSICAL ASPECT

•Round granules with high U.I.

Less dust in Sadepan's MU/UF during production Less friction during blending operations with others round granular raw materials

85

86

The final product is a spherical granule having SGN that, in choice, could be included between 100 and 360 or in Chip size with SGN 40 as well.

COMPETITOR ANGULAR LITTLE STONES

88

SADEPAN'S ROUND GRANULES

97

Ecotechnology

SADEPAN MU/UF products obtained by the new technology have:

INNOVATIVE PHYSICAL ASPECT

•Round granules with high U.I.

Less friction during blending operations with others granular raw materials Less dust in MU/UF Sadepans during production

INNOVATIVE TECHNICAL ADVANTAGES

•The most completely reacted products

Unreacted N- urea content ≤ 4.5%

•The lower Salt Index

Salt index $\leq 1\%$

SADEPAN CHIMICA MU greens grade Nitrogen release curve Vs competitors

PERCENTAGE OF APPLIED N RELEASED FROM SELECTED NITROGEN SOURCES

SADEPAN CHIMICA MU greens grade Nitrogen release curve Vs competitors

INFLUENCE OF N SOURCE ON N RELEASED OVER TIME

SADEPAN CHIMICA UF granular size Nitrogen release curve Vs competitors

INFLUENCE OF N SOURCE ON N RELEASED OVER TIME

SADEPAN CHIMICA results from greenhouse studies on TOMATOES

Effects of Various Fertilizers on the Overall Quality of 'Better Boy' Tomatoes

polymer coated competitor A @ 3.78 gms N/pot
 polymer coated competitor B @ 3.78 gms N/pot
 Control (no fertilizer)

SADEPAN CHIMICA studies from greenhouse conditions on N – SENSITIVE CROP

Effects of Various Fertilizers @ 3 Rates on the Injury of 'Janie' Marigolds

SADEPAN CHIMICA studies from greenhouse conditions on N – SENSITIVE CROP

Effects of Various Fertilizers on the Overall Quality of 'Janie' Marigolds

Source By J.B. Sartain- University of Florida

INFLUENCE OF N SOURCE ON TOTAL QUANTITY OF N LEACHED FROM BERMUDAGRASS

Source By J.B. Sartain- University of Florida

Thank you for your kind attention