

Microbial Biofertilizers and their Potential in sustainable Agriculture

Dr. Heike Bücking

Outline

1. Overview – Plant Microbe Interactions

- 2. Mycorrhizal interactions
- 3. Effect of mycorrhizal interactions on nutrient uptake and pathogen resistance
- 4. Interactions between exchange processes
- 5. Nitrogen flux in the symbiosis
- 6. Mycorrhizal fungi and their application

Ectomycorrhiza Fagus

Overview – Plant-Microbe Interactions

Abrosimov 2007

Bacteria

- Nitrogen (N₂) Fixation
- □ Symbiotic bacteria (Rhizobia, Frankia)
- □ Associated bacteria (*Acetobacter* sugarcane)
- □ Free-living bacteria (*Frankia* rhizosphere)
- Plant Growth promoting Bacteria

Smith and Read 1997

Fungi

Mycorrhizal associations

- Arbuscular mycorrhizal fungi
- Ectomycorrhizal fungi
- Other root colonizing fungi

Plant-Growth Promoting Bacteria

Siberian soy beans, 1 – control, 2 - nodule bacteria; 3 - nodule bacteria and pseudomonads (Dashkevish 2007)

- Enhanced N supply to the host by N₂ fixation
- Enhanced supply of other plant nutrients (P mobilization, S oxidation, Fe chelation)
- Phytochrome production leading to increases in root surface area (IAA, cytokinin, gibberllin)
- Enhancement of other beneficical bacterial or fungal symbioses

The significance of mycorrhizal interactions

Smith and Read 1997

- □ 80-90% of all known plant species
- bryophytes, pteridophytes, gymnosperms and most of the angiosperms
- simultaneous colonization by various mycorrhizal types and fungal species, dependent on environmental conditions
- essential for achlorophyllous plants
- Increasing attention for their role as biofertilizers, bioprotectors and bioregulators

The benefits for both partners

Structure of an arbuscular mycorrhizal root

How does the fungus-plant interaction work?

- Increase in the nutrient absorbing surface area beyond the depletion zone of the root
- Highly efficient nutrient uptake systems
- Better P storage capabilities
- Utilization of organic nutrient resources

How does the fungus-plant interaction work?

Mycorrhizal and nonmycorrhizal barley plants after colonisation with Cochliobolus sativus (Kogel, Giessen)

- Increased nutrient supply
- Competition among the microorganisms for limited nutrient resources
- Effect on the quantity and quality of root exudates
- Selective pressure on the microbial populations in the rhizosphere leading to an increase in the number of microorganisms with antagonistic properties
- Activation of defense mechanisms by the mutualistic fungus

Nutrient exchange always includes an apoplastic step

arbuscular mycorrhiza

Andescellarlantienterfece

Plant plasma membrane
Plant cell wall
Interfacial matrix
Fungal cell wall
Fungal plasma membrane

Nutrient exchange includes passive and active steps

The C availability affects P uptake and P transfer by arbuscular mycorrhizas

P uptake and P transfer is stimulated by the carbohydrate availability

The dependency of various crop species on mycorrhiza

Mycorrhiza dependency	Potential yield loss without mycorrhiza	Crops
Very high	Greater than 90 %	Linseed
High	60 – 80 %	Sunflower, mungbean, pigeon pea, maize, chickpea
Medium	40 - 60 %	Sorghum, soybean
Low	10 – 30 %	Wheat, barley, triticale
Very low	0 – 10 %	Panicum, canary
Nil	0	Canola, lupins

The State of Queensland (Department of Primary Industries and Fisheries)

Application of mycorrhizal fungi

- □ Arbuscular mycorrhizal fungi can account for 5 50 % of the microbial biomass in the soil (Ryan and Graham, 2002)
- Efficient mycorrhizal symbiosis can substitute 222 kg P₂O₅ ha⁻¹ (Kelly et al., 2001)
- In field studies, the growth yield of linseed could be correlated to the mycorrhizal colonization rate (Thompson et al., 1991)
- High P levels in the soil reduce significantly the colonization rate.

Why do we need mycorrhizal research?

We need to better understand:

- Regulation of transport processes (beneficial nutrient transport in relation to the carbon costs for the plant)
- Complex role of arbuscular mycorrhizal fungi in resource allocation
- Partner choice in mycorrhizal systems
- □ Effects of mycorrhizal colonization on the nutritional value
- Interactions between arbuscular mycorrhizal fungi and root pathogen under field conditions
- P management

Studying metabolism and transport in arbuscular and ectomycorrhizal associations

Nitrogen metabolism and transport in the symbiosis

Activity and regulation of the urea cycle in the IRM
 Interactions between the N and P flux in the symbiosis
 Regulation of plant and fungal N transporters and interactions of C and N flux
 Gene expression, in situ hybridization, labeling studies, GC/MS, microautoradiography, enzymatic assays, Western blots, EDXS

The application of mycorrhizal fungi in sustainable agriculture

Maximal benefit of mycorrhizal fungi by:

- □ Inoculation with efficient mycorrhizal fungi
- Increase of activity by proper cultural practices

Cultural practices that increase the activity

- Reduced tillage
- □ Crop rotations
- □ Cover crops
- Phosphorus management

Collaborators

- □ Yair Shachar- Hill, Michigan State University
- □ Philip E. Pfeffer, USDA Wyndmoor
- □ Peter Lammers, New Mexico State University
- Toby Kiers, University Amsterdam

Thanks for your attention