Enhanced Efficiency Fertilizers

M. M. Alley
Dept. of Crop & Soil Environmental Sciences
Virginia Tech
Blacksburg, VA

Fertilizer Outlook and Technology Conference
November 11-13, 2008 Charleston, SC
Enhanced Efficiency Fertilizers

- Controlled release, slow release, and/or “stabilized” fertilizers
- Delays the nutrient availability for plant uptake for some period of time after application
- The nutrient is available to the plant significantly longer than a reference “rapidly available nutrient fertilizer” such as ammonium nitrate, urea, or ammonium phosphate or potassium chloride (AAPFCO*, 1995)
Need for Enhanced Efficiency Fertilizers?

- Fertilizer Use Efficiency
 - Definition
 - Lbs of nutrient in harvested yield per lb of applied fertilizer
 - Lbs of nutrient in total crop biomass per lb of applied fertilizer
 - Lbs of nutrient in crop biomass plus that retained in the soil with potential for future crop use
Need for Enhanced Efficiency Fertilizers?

- Fertilizer Use Efficiency
 - Varies depending on soils, climatic conditions, fertilizer source, crop and application method
 - N – 30-60%
 - P – low recovery in year, but long-term residual effects, 20-80%
 - K - 20-80%, immediate and residual effects

Fertilizer Outlook and Technology Conference
November 11-13, 2008 Charleston, SC
Need for Enhanced Efficiency Fertilizers?
Towards sustainable use of resources and balanced use of coastal and marine ecosystems, recognizing both their human and natural components

NATIONAL ESTUARINE EUTROPHICATION ASSESSMENT

CURRENT STATUS

Fertilizer Outlook and Technology Conference
November 11-13, 2008 Charleston, SC
Enhanced Efficiency Fertilizers – Information Sources

- Journal of Controlled Release. Elsevier. “original research involving the controlled release and delivery of drugs and other biologically active agents”
Vast majority of Enhanced Efficiency Fertilizers Are Focused on Nitrogen
Enhanced Efficiency Fertilizer Technologies

- Controlled Release
 - Reduced solubility
 - Urea formaldehyde or urea forms
 - Methylene ureas
 - Isobutylidene diurea (IBDU)

- Coatings
 - Sulfur
 - Polymer
 - Resins

Fertilizer Outlook and Technology Conference
November 11-13, 2008 Charleston, SC
Low-Solubility Compounds (UF, MU)

- Urea-formaldehyde reaction products
 - Discovered in 1930s
 - First fertilizer use in 1940s
 - Mixture of urea and UF polymers of various chain lengths
 - Solid and liquid products
 - Solubility dependent on chain length

- Products: Nutralene, Nitroform, Nitamin, CoRoN
Structural Compositions

ammonia

urea

di-triazone

triazone

Methylene diurea
Low-Solubility Compounds (UF, MU)

- N release by microbial mineralization (soil temperature, moisture, pH, etc)
- Longer, complex chains = slower release
Low-Solubility Compounds (IBDU)

- Isobutylidene diurea – IBDU (Solid)
- No free urea
- Release by slow dissolution and hydrolysis
 - IBDU reacts with water to release urea
 - Typical release 8-12 weeks
 - Finer material dissolves faster

Fertilizer Outlook and Technology Conference
November 11-13, 2008 Charleston, SC
Coated Water Soluble Fertilizers

- Sulfur coated urea
 - N availability from urea depends on the destruction of the sulfur coating and dissolving of the urea.
Decomposition of Sulfur Coating

Sulfur Coating → Solid Urea

Solid Urea + H₂O → Solid Urea

Solid Urea + H₂O → Dissolved Urea

Dissolved Urea → Microbes

Microbes → Solid Urea

Solid Urea + S + H₂O → Solid Urea
Coated Water Soluble Fertilizers

- Sulfur coated urea
 - N availability from urea depends on the destruction of the sulfur coating and dissolving of the urea.
 - Biological oxidation
 - Physical breakage
 - Release rate
 - Thickness of coating
 - Environmental conditions
 - Slow compared to water soluble fertilizer
Coated Water-Soluble Fertilizers – Polymer-Coated Fertilizers

- Polymer coatings applied to soluble fertilizer
- Release by diffusion through coating
- Release rate determined by
 - Polymer chemistry, thickness, coating process
 - Temperature
- Release can be highly controlled with the polymer
- Osmocote in 1967
- Products: Trikote, Polyon, Duration, ESN
Polymer-Coated N Mechanism

Moisture is required!
Crop Performance in Terms of Yield and Quality
Corn Grain Yield Response to At-Planting Applications of Product A (urea forms)

<table>
<thead>
<tr>
<th>N Source</th>
<th>N Rate (lbs/ac)</th>
<th>Site 1 Yield (bu/ac)</th>
<th>Site 2 Yield (bu/ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product A</td>
<td>0</td>
<td>76 d*</td>
<td>129 c</td>
</tr>
<tr>
<td>Product A</td>
<td>50</td>
<td>126 c</td>
<td>161 b</td>
</tr>
<tr>
<td>Product A</td>
<td>100</td>
<td>150 c</td>
<td>184 ab</td>
</tr>
<tr>
<td>Product A</td>
<td>150</td>
<td>180 b</td>
<td>189 ab</td>
</tr>
<tr>
<td>Product A</td>
<td>200</td>
<td>207a</td>
<td>184 ab</td>
</tr>
<tr>
<td>UAN (30%)</td>
<td>40+160</td>
<td>209 a</td>
<td>201 a</td>
</tr>
</tbody>
</table>

Values followed by different letters differ significantly at the 5% (site 1) and 10% (site 2) levels of probability. Site 1 irrigated.

Standard trt. (40 lbs N + 60 lbs N) yield = 80.4 bu/acre

$y = 46.3 + 0.234x$

$r^2 = 0.68 \ p<0.001$
Product A & B Performance

- Product A – urea forms with mixtures of molecules including urea and single chain and ring structures from urea formaldehyde
- Product B – urea forms mixture and physical coating
- Performance based on environmental conditions and placement
 - Temperature and moisture
 - No-tillage

Fertilizer Outlook and Technology Conference
November 11-13, 2008 Charleston, SC
Stabilized Fertilizers

- Nitrification Inhibitors
 - Nitrapryrin (N Serve)
 - Used with anhydrous ammonia (volatile)
 - Dicyandiamide (DCD/Guardian)
 - Formulations for use with granular and liquids
 - Dimethylpyrazole phosphate (DMPP or ENTEC)

- Urease Inhibitor
 - NBPT (Agrotain)
 - Formulations for use with granular and liquids

- MECHANISMS HAVE BEEN PUBLISHED IN SCIENTIFIC LITERATURE
Product Performance
Mechanism(s)

N Serve® - Nitrification Inhibitor, volatile
• Higher CEC soils, greater potential to hold N as ammonium
• Specific for soil bacteria converting ammonium to nitrate, will be affected by temperatures and moisture
• Can not use with surface applications
Products without published mechanism(s) for performance

Claims

- Eliminates fixation of fertilizer by soil
- Fertilize the plant not the soil
- Lasts for entire growing season
- Average yield increases of 10-15% consistently
- Protects nutrients from soil loss
- Increase plant root function
- Improves nutrient availability by 25%
- “You can reduce your fertilizer cost without reducing yield”
Corn Grain Yield Response to Product C in Starter Fertilizer, VA 2008

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rep 1</th>
<th>Rep 2</th>
<th>Rep 3</th>
<th>Rep 4</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check</td>
<td>171</td>
<td>173</td>
<td>177</td>
<td>173</td>
<td>173.5</td>
</tr>
<tr>
<td>Product C</td>
<td>170</td>
<td>171</td>
<td>173</td>
<td>174</td>
<td>172.0</td>
</tr>
</tbody>
</table>

*No statistical difference at 10% level of probability.

Lack of a valid published mechanism
- prevents interpretation of why the lack of performance;
- should product have been used in this situation?
Plant Growth and Plant Nutrition are Complex!

“Providing adequate plant nutrients to growing crops is not rocket science, it is a lot more complex!”
– Dr. Jerry Hatfield, National Soil Tilth Lab, USDA-Ames Iowa.
University Perspective on Development of Fertilizers

- Publish the basis for the fertilizer material or additive!
 - How does it work?
 - Environmental effects on fertilizer or additive.
 - Temperature
 - Moisture
 - Microbial or non-microbial
 - Other factors??

Fertilizer Outlook and Technology Conference
November 11-13, 2008 Charleston, SC
University Perspective on Development of Fertilizers

- Enlist cooperators in areas that are likely to benefit from the new fertilizer or additive
 - Everyone would like to recommend the “silver bullet” for a nutritional problem or to increase efficiency.
 - Availability of cooperators and financing can be a challenge.
University Perspective on Development of Fertilizers

- Realize that we are dealing with complex biological and environmental conditions
 - No material is going to provide benefits in every situation!
 - Establish the conditions for maximum performance!
 - Identify situations when performance is unlikely to occur!
- Develop these boundaries prior to large scale marketing!
Innovative Products, Established Modes of Action, Identified Situations for Successful Performance and Cooperation Are Essential for Success!